
Buffer overflows Integer overflows and underflows

CITS3007 Secure Coding
Memory and arithmetic errors

Unit coordinator: Arran Stewart

1 / 56

Buffer overflows Integer overflows and underflows

Outline

▶ Buffer overflows
▶ relevance, related vulnerabilities, protections

▶ Integer overflows and overflows

2 / 56

Buffer overflows Integer overflows and underflows

Buffer overflows

3 / 56

Buffer overflows Integer overflows and underflows

Buffer overflows – relevance

▶ We’ve seen a historical case where buffer overflows were used
in a security incident (the Morris Internet worm)

▶ Buffer overflows are still a very major source of vulnerabilities
▶ The CWE (“Common Weakness Enumeration”) database has

annual “Top 25 most dangerous software weaknesses” lists
▶ CWE-787, “Out-of-bounds write”, the category to which many

buffer overflows belong, has been in the top 2 CWEs for 4 years
running

CWE (“Common Weakness Enumeration”)
A classification of vulnerabilities (like a hierarchical dictionary or glossary).

CVE (“Common Vulnerabilities and Exposures”)
A database of publicly disclosed flaws in software programs.

4 / 56

https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html

Buffer overflows Integer overflows and underflows

Buffer overflows

If not detected, buffer overflows can persist for a very long time.

Some past long-persisting buffer overflow vulnerabilities:

“Baron Samedit” vulnerability
▶ Type: heap-based buffer overflow
▶ ID: CVE-2021-3156
▶ Affected software: sudo on

Unix-like systems, incl. MacOS
▶ Year introduced: 2011
▶ Year detected: 2021
▶ How exploited: Specially crafted

arguments to sudoedit
▶ Effects: Unprivileged user can gain

root privileges

“BootHole” vulnerability
▶ Type: classic buffer overflow
▶ ID: CVE-2020-10713
▶ Affected software: GRUB2

bootloader
▶ Year introduced: 2010
▶ Year detected: 2020
▶ How exploited: Specially crafted

grub.cfg file
▶ Effects: Attacker can control

secure boot process

5 / 56

https://nvd.nist.gov/vuln/detail/CVE-2021-3156
https://nvd.nist.gov/vuln/detail/CVE-2021-3156
https://www.csoonline.com/article/3568362/linux-grub2-bootloader-flaw-breaks-secure-boot-on-most-computers-and-servers.html
https://nvd.nist.gov/vuln/detail/CVE-2020-10713

Buffer overflows Integer overflows and underflows

Related vulnerabilities

▶ CWE-787, “Out-of-bounds Write”, includes as sub-types of
vulnerability:
▶ CWE-121 Stack-based Buffer Overflow: A buffer on the stack is

overflowed (can overwrite stack return addresses)
▶ CWE-121 Heap-based Buffer Overflow: A buffer on the heap is

overflowed (can corrupt data)
▶ CWE-823 Use of Out-of-range Pointer Offset: Pointer could

potentially point anywhere in memory

6 / 56

https://cwe.mitre.org/data/definitions/787.html

Buffer overflows Integer overflows and underflows

Underlying causes

▶ a buffer (array or string) is just some space in which data can be
stored.

▶ some languages check at runtime whether a reference to an array
position is in bounds, others don’t
▶ C does not; Java and Python do
▶ In C++, bounds checking is typically optional – e.g. if using the

std::vector class, the bounds-checked alternative to myvec[42]

is myvec.at(42)

7 / 56

Buffer overflows Integer overflows and underflows

Underlying causes

▶ If, while writing to a buffer, a program overruns the bounds of the
buffer, then that’s a buffer overflow.

▶ If the data overwrites adjacent data or program instructions, that can
lead to unpredictable behaviour and security vulnerabilities.

8 / 56

Buffer overflows Integer overflows and underflows

Underlying causes

buffer
go to

other variables

 U S E R N A M E blah blah 1 \0xc0 P h / / ... blah blah blah blah 0x7fffffffd908

start of machine code instructions for
execve("bin/sh")

9 / 56

Buffer overflows Integer overflows and underflows

Types of buffer overflow

▶ stack buffer overflow – overrun a buffer declared as a variable
on the stack.
▶ Will typically overwrite adjacent variables and/or stack frame

members (e.g. return address)
▶ heap overflow – we overrun a buffer contained in dynamically

allocated memory.
▶ Will typically overwrite other data structures stored on the heap

10 / 56

Buffer overflows Integer overflows and underflows

Mechanics of overflow

▶ Classic way to exploit
these – do code
injection

▶ Insert malicious code
into some predictable
location in memory

▶ Trick the program into
executing the code
(e.g. by overwriting the
return address of the
stack frame).

11 / 56

Buffer overflows Integer overflows and underflows

Mechanics of overflow, cont’d

▶ But there are other ways to exploit vulnerabilities without code
injection.
▶ you could corrupt data – e.g. you might overwrite a variable

that’s used to select a branch of an if statement

Further reading
If interested – the Goodrich and Tamassia textbook, Introduction to
Computer Security, contains good overviews of buffer overflow techniques
in chapter 3 “Operating systems security”.

12 / 56

Buffer overflows Integer overflows and underflows

Preventing buffer overflow vulnerabilities

▶ Re-write in a memory safe language (Java, Python)
▶ Audit/static analysis
▶ Prevent execution of injected code (e.g. segment permissions)
▶ Add runtime instrumentation to detect problems

(e.g. sanitizers)
▶ Make it harder for attackers to exploit code and data through

address randomisation
▶ Testing/fuzzing
▶ Validate untrusted input (discussed in future lectures)

13 / 56

Buffer overflows Integer overflows and underflows

Prevention – memory safe language

Re-write in a memory safe language (Java, Python)

▶ Not always possible for existing code
▶ Memory-safe languages may have their own disadvantages.

e.g.:
▶ slower
▶ longer start-up time
▶ need to distribute runtime
▶ may not be portable to all platforms C is
▶ different skill-set

14 / 56

Buffer overflows Integer overflows and underflows

Prevention – audit/static analysis

▶ Buffer overflows (and other attacks relying on “wild pointers”)
tend to arise from format string vulnerabilities and common
errors in managing dynamic memory

▶ So trying to eliminate those sources of errors goes a long way
to eliminating the problem

▶ Manual audits and automated static analysis can be applied to
find such errors

▶ We examines these further when we look at code reviews and
static analysis

15 / 56

Buffer overflows Integer overflows and underflows

Prevention – runtime instrumentation

It may be possible to add run-time checks to a normally unchecked
language.

▶ May be in the form of a library or alternative implementation of
standard functions (e.g. malloc, strncpy, etc)

▶ Compilers such as gcc and clang offer sanitizers which can be
enabled by providing flags at compilation time
(e.g. -fsanitize=undefined is an umbrella “undefined
behaviour sanitizer” for gcc)
▶ These sanitizers can detect errors such as buffer overflows

▶ We examine sanitizers further under the heading of dynamic
analysis

16 / 56

https://hpc-wiki.info/hpc/Compiler_Sanitizers

Buffer overflows Integer overflows and underflows

Address sanitizer

An example sanitizer – AddressSanitizer, originally developed by
Google.

A refinement of earlier techniques (e.g. “Electric Fence”, developed
by Bruce Perens in 1987 while working at Pixar).

It replaces the normal malloc and free functions with versions
where the memory around malloc-ed regions is “poisoned”.

Reads and writes are checked to make sure they’re not using
addresses in the “poisoned” regions – if they are, the program
aborts.

17 / 56

https://clang.llvm.org/docs/AddressSanitizer.html

Buffer overflows Integer overflows and underflows

Address sanitizer drawbacks

▶ Program will run more slowly (due to extra instructions being
executed)

▶ Program will use significantly more memory

18 / 56

Buffer overflows Integer overflows and underflows

Stack “canaries”

Another runtime checking approach is to embed “canaries” in stack
frames

▶ Canaries can be e.g. random strings chosen at program startup
▶ Code is inserted that verifies the integrity of the canaries prior

to function return
▶ If an attacker overflows a stack buffer, they won’t know the

correct value of the “canaries”, so the overflow will be detected

19 / 56

Buffer overflows Integer overflows and underflows

Stack “canaries”

GCC has several options that will enable canaries

▶ -fstack-protector: emits extra code to check for buffer
overflows, such as stack smashing attacks, in functions GCC
identifies as “vulnerable”.
(Main reason: the function contains a buffer of length ≥ 8)

▶ -fstack-protector-all: Similar, but adds extra code to all
functions

20 / 56

https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html

Buffer overflows Integer overflows and underflows

Runtime instrumentation limitations

In general, any of these techniques will reduce performance (due to
additional memory being required and/or additional runtime checks
being performed)

▶ However, the cost may be tolerable
▶ e.g. Use of stack canaries in GCC results in approx 8%

performance penalty

Further reading
If interested – Wikipedia has an article on buffer overflow protection,
mostly focusing on instrumentation/dynamic analysis techniques.

21 / 56

https://en.wikipedia.org/wiki/Buffer_overflow_protection

Buffer overflows Integer overflows and underflows

Prevention – address randomization

This technique is called ASLR (Address Space Layout
Randomization)

Used to prevent an attacker from reliably jumping to some
particular function/address in memory.

▶ We start the stack and heap at some random location in
memory

▶ We map shared libraries to random locations in process memory
▶ This means that the attacker can no longer e.g. jump directly to

the system or exec function

22 / 56

Buffer overflows Integer overflows and underflows

ASLR limitations

▶ Fairly coarse-grained randomization
▶ May be able to defeat just by making multiple attempts

▶ Some library routines may not be “ASLR”d
▶ May be able to analyse a binary and use return-oriented

programming to exploit it

Further reading
If interested, you could read:
▶ “Bypassing ASLR/DEP” (PDF, by V Katoch)
▶ “Defeating ASLR” (blog post, by B Karaceylan)

▶ Requires some knowledge of GDB plugins and the Python
pwntools package

23 / 56

https://en.wikipedia.org/wiki/Return-oriented_programming
https://en.wikipedia.org/wiki/Return-oriented_programming
https://web.archive.org/web/20150213061340/https://www.exploit-db.com/wp-content/themes/exploit/docs/17914.pdf
https://bkaraceylan.github.io/hack/binary-exploitation/2020/05/01/defeating-aslr-part-1.html
https://docs.pwntools.com/en/stable/

Buffer overflows Integer overflows and underflows

Prevention – validate untrusted input

We need to be particular careful when we’re reading and using data
(e.g. especially sizes or lengths of things) from potentially untrusted
sources. e.g.

▶ over the network
▶ from a user-supplied file

24 / 56

Buffer overflows Integer overflows and underflows

Audit/static analysis

Programs can be manually or (partly) automatically checked for
common problems:

▶ Use of “unsafe” functions
▶ Improper use of “safe” functions
▶ Poor memory management practices

Static analysis tools:

Examples include Splint, OCLint, Clang Static Analyzer

We will see more on these in labs.

25 / 56

Buffer overflows Integer overflows and underflows

Unsafe library functions

Many C string functions are unsafe to use because they rely solely
on the NUL delimiter to mark the end of strings; so if this delimiter is
missing, they will keep reading or writing memory til a NUL is
encountered.

These functions include:

▶ strcpy (char *dest, const char *src)
▶ strcat (char *dest, const char *src)
▶ gets (char *s)
▶ scanf (const char *format, ...)
▶ and many more.

In general, the “safe” equivalents of those functions should be used.

(Query: when can we use the unsafe versions?)

26 / 56

Buffer overflows Integer overflows and underflows

“Safe” library functions

e.g. char *strncpy(char *dest, const char *src, size_t n) is a
“safe” version of strcpy (char* dest, const char *src).

However, the word “safe” here is a misnomer. They are
definitely safer than the originals, but still need to be used properly.

strncpy will copy at most n characters; but it won’t properly
terminate dest unless a NUL appears in those n characters.

So the proper use is usually something like:

#define BUF_SIZE 50

char buf[BUF_SIZE];

strncpy(buf, src, BUF_SIZE);

buf[BUF_SIZE−1] = '\0';

27 / 56

Buffer overflows Integer overflows and underflows

An aside – the “Annex K” functions (best avoided)

▶ You may come across mention of the “Annex K” functions.
▶ In “Annex K” of the C11 standard are a number of

“bounds-checking” variants of many standard C functions (with
names like memcpy_s, strcpy_s, fopen_s, and so on – they’re
sometimes called the “_s” functions).

▶ You are only likely to encounter these functions on Windows.

28 / 56

Buffer overflows Integer overflows and underflows

“Annex K” cont’d

▶ The “Annex K” functions were originally proposed for inclusion
by Microsoft.

▶ The only widely used C compiler that implements them is
Microsoft’s MSVC compiler, and MSVC’s implementation is
non-conformant with the standard in any case.

▶ GCC and Clang do not implement them (and the developers
have stated they have no plans to do so).

▶ So if you use them on Windows, your code will thus be
non-portable (though implementations of the Annex K
functions for Linux and MacOS are available).

29 / 56

Buffer overflows Integer overflows and underflows

“Annex K” cont’d

▶ The functions are mostly not well-regarded amongst C
developers.

▶ They aim to be “safe” drop-ins for the standard C library
functions
▶ But they require you to know the destination buffer size in order

to use them properly; and if you know that, you can just use
the standard C library functions anyway.

▶ Annoyingly, some static analysers will pop up with
recommendations you use scanf_s, even on platforms where
you can’t do so.
▶ If you can, disable that warning message.

▶ tl;dr Don’t use the “_s” (“Annex K”) functions.

30 / 56

Buffer overflows Integer overflows and underflows

“W xor X” (“write XOR execute”)

▶ Modern CPUs provide hardware support for marking segments
of memory as non-executable
▶ Both AMD and Intel processors support this

▶ The stack and heap can be put in non-executable memory
▶ Any attempt to execute memory in those regions will result in a

“fault”
▶ This general technique is called “executable-space protection”

▶ On Windows, you may hear it referred to as “Data Execution
Prevention” (DEP)

31 / 56

https://en.wikipedia.org/wiki/Executable-space_protection
https://en.wikipedia.org/wiki/Executable-space_protection#windows
https://en.wikipedia.org/wiki/Executable-space_protection#windows

Buffer overflows Integer overflows and underflows

“W xor X”

▶ Marking memory as non-executable does not prevent data
structures or return addresses from being corrupted

▶ It’s possible to overwrite a stack return address with some
library routine, and arrange the contents of the frame above it
to look like arguments to that routine

▶ So the attacker cannot execute arbitrary code within the
running process; but they may still be able to call functions like
system (which executes commands via the operating system’s
shell).

32 / 56

https://en.cppreference.com/w/c/program/system

Buffer overflows Integer overflows and underflows

return-oriented programming

▶ Marking memory as non-executable doesn’t defend against a
style of attack called “return-oriented programming”.

▶ A “return address” can point to any sequence of instructions
ending in a “return” (called “gadgets”)

▶ Therefore, it’s possible to arrange the stack such that stack
frames will execute a sequence of these gadgets, with
appropriate data acting as function arguments

▶ If an attacker can find appropriate “gadgets” in library routines,
they may be able to perform arbitrary computations without
needing to inject code

33 / 56

Buffer overflows Integer overflows and underflows

Further exploration – Heartbleed

▶ Heartbleed is one of the more well-known buffer overflow
vulnerabilities

▶ It is technically a buffer over-read, resulting from from poor
input validation in versions of the OpenSSL library.

▶ The result is a breach of confidentiality.
▶ xkcd has a good explanation of how the vulnerability works.

34 / 56

https://www.openssl.org
https://en.wikipedia.org/wiki/Heartbleed
https://xkcd.com/
https://www.explainxkcd.com/wiki/index.php/1354:_Heartbleed_Explanation
https://xkcd.com/1354/

Buffer overflows Integer overflows and underflows

Integer overflows and underflows

35 / 56

Buffer overflows Integer overflows and underflows

Integer overflows and underflows

Informally, “overflow” tends to be used to describe several different
phenomena.

▶ Intended “wraparound” of integer types in various languages
▶ “Underflow” – wraparound from the bottom
▶ Exceeding the bounds of numbers representable in an integer

type, resulting in undefined behaviour
▶ Assigning a number to a type to small too hold it, resulting in

“truncation”

Any of these can result in security vulnerabilities, due to a number
not holding the value programmers expect it to hold.

36 / 56

Buffer overflows Integer overflows and underflows

Causes

Most people are used to thinking of numbers as if they were
idealized mathematical integers.

For two such integers x and y , if x > 0 and y > 0, then xy > 0,
xy > x and xy > y .

But for (say) an unsigned char, we have 13 × 20 = 4.

And for a signed char, the behaviour is undefined (but probably,
10 × 13 = −126).

37 / 56

Buffer overflows Integer overflows and underflows

Summary

▶ unsigned integer types: If a new value is out of bounds, wrap
around

▶ signed integer types: If the new value is out of bounds,
undefined behaviour. Unpredictable, but often the new value
will wrap around

▶ conversion from a larger type to unsigned integer type: Wrap
around (truncation)

▶ conversion from a larger type to signed integer type:
Implementation defined, but typically will truncate

38 / 56

Buffer overflows Integer overflows and underflows

Unsigned integer wraparound

▶ In C, for unsigned integer types, their intended behaviour is
that if you attempt to calculate a value that would go outside
their bounds, the value will “wrap around”
▶ i.e., if the maximum representable number is N, then trying to

create the value N + m will instead give the value N mod m.
▶ And likewise, values will wrap around if you try to create a value

less than 0

39 / 56

Buffer overflows Integer overflows and underflows

Signed integer overflow

▶ For signed integer types, exceeding the representable bounds
for a type results in undefined behaviour.

▶ In practice, on many platforms the value will “wrap around”.

▶ However, the compiler is allowed to assume that the value
hasn’t wrapped around. (That’s what “undefined behaviour
means”: only programs with no UB have a well-defined
meaning; so the compiler is allowed to assume that no UB ever
occurs.)

40 / 56

Buffer overflows Integer overflows and underflows

Signed integer overflow

▶ The consequence is that once UB has occurred, you can’t
reliably check for it.

e.g. Suppose we have an int n containing some positive
number, and we add one to it. How can we check to see if it
overflowed?

Maybe we save the value of old n, and make sure n > old_n; or
ask whether n < 0.

But the compiler is allowed to tell us that n is greater than
old_n, because that’s what would be true if no UB occurred.

It can “optimize away” the results of checks like n > old_n,
because it “knows” they must evaluate to true.

41 / 56

Buffer overflows Integer overflows and underflows

Signed integer overflow

Caution
To reiterate: there is no way, in standards-compliant C code, of
checking for overflow after the fact; the compiler can and will lie to
you.

If you write code which tries to check for overflow after the fact,
you will receive very few (if any) marks for it.

42 / 56

Buffer overflows Integer overflows and underflows

Conversion between types

If you assign a larger integer type to a smaller unsigned type, the
result will just be modulo’d with the MAX + 1 for that type until the
result is in range.

The effect is to truncate the value.

For example:

unsigned int a = 0x10003;

unsigned char b = a;

After the statements above are executed, b will be equal to 3.

43 / 56

Buffer overflows Integer overflows and underflows

Conversion between types

If you assign a larger integer type to a smaller signed type, the
result is implementation-defined (and can include raising an
implementation-defined signal which would terminate the program).

Typically, this too will result in truncation.

signed int a = 0x10003;

signed char b = a;

After the statements above are executed, b will (probably) be equal
to 3.

44 / 56

Buffer overflows Integer overflows and underflows

Vulnerabilities arising from truncation

struct thing_t {

unsigned short len;

char * buf;

};

void myfunc() {

size_t len = get_size();

// get len from e.g. argv,

// or a network message

struct thing_t thing;

thing.buf = malloc(len + 3);

thing.len = len;

// Suppose len is USHRT_MAX+10.

// Then thing.len is incorrectly

// set to 13

// Later, the program might use thing:

const size_t BUF_SIZE = 100;

char buffer[BUF_SIZE];

if (thing.len < BUF_SIZE) {

strcpy(buffer, thing.buf);

// overflow, as thing.buf is actually

// much bigger

}

45 / 56

Buffer overflows Integer overflows and underflows

OpenSSH integer overflow vulnerability

This results from unexpected wraparound in size_t.

▶ See https://nvd.nist.gov/vuln/detail/CVE-2002-0639

Vulnerable code is in the function input_userauth_info_response.

nresp = packet_get_int();

if (nresp > 0) {

response = xmalloc(nresp * sizeof(char*));

for (i = 0; i < nresp; i++)

response[i] = packet_get_string(NULL);

}

46 / 56

https://nvd.nist.gov/vuln/detail/CVE-2002-0639
https://github.com/openssh/openssh-portable/blob/cb72e4f6d2cf63cda22484ec90142689fed288f6/auth2-chall.c#L258

Buffer overflows Integer overflows and underflows

OpenSSH integer overflow vulnerability

nresp = packet_get_int();

if (nresp > 0) {

response = xmalloc(nresp * sizeof(char*));

for (i = 0; i < nresp; i++)

response[i] = packet_get_string(NULL);

}

▶ nresp can be attacked-controlled (it means “number of responses”).
▶ So set nresp to (SIZE_MAX + 1) / 8, where SIZE_MAX is the largest value a

size_t can hold – 264 − 1, on my machine – so for me nresp will be 262.
▶ Arithmetic on a size_t is done modulo 264.
▶ So nresp * sizeof(char*) will be nresp * 8 (mod 264), which is 0.
▶ 0 is a valid argument to malloc (though it won’t actually allocate any

memory).
▶ So response will succeed, allocating no memory, and the subsequent loop

will immediately overflow the response buffer, corrupting data on the heap.

47 / 56

Buffer overflows Integer overflows and underflows

Defending against integer overflow

▶ Use appropriate types
▶ Do arithmetic in a wider type
▶ Use compiler flags
▶ Use libraries or code that provide “safe” arithmetic functions

48 / 56

Buffer overflows Integer overflows and underflows

Use appropriate types

A size or a (non-negative) count
Should use size_t

Integer types with specific bit-width
Should use uint8_t, uint16_t, uint32_t, uint64_t,
etc.

An integer which will hold any pointer
Should use intptr_t

Difference between two pointers
Should use ptrdiff_t

49 / 56

Buffer overflows Integer overflows and underflows

Use compiler flags

▶ -fwrapv – Treat signed integer overflow behaviour as
well-defined – it “wraps round”

▶ -ftrapv – With gcc on AMD64, supposed to cause the SIGABRT

signal to be raised, which will normally end the program. But
apparently is broken (see
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=35412)

▶ -fsanitize=signed-integer-overflow – print error report and
continue

▶ -fno-sanitize-recover=signed-integer-overflow – print an
error report and exit the program;

▶ -fsanitize-trap=signed-integer-overflow – raise a trap
(usually, the SIGABRT signal)

50 / 56

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=35412

Buffer overflows Integer overflows and underflows

“Safe” arithmetic

if (a > 0 && b > INT_MAX − a)

abort();

if (a < 0 && b < INT_MIN − a)

abort();

result = a + b;

51 / 56

Buffer overflows Integer overflows and underflows

“Safe” arithmetic

To do signed wraparound, if there’s no compiler support:

▶ Convert from signed char to unsigned. (You can just write:
unsigned char myuchar = my_signed_val.) The value will wrap
as necessary.

▶ Do your calculations on the unsigned numbers. The results will
always be well-defined.

▶ Convert back to signed char, in this way: if the unsigned
result (call it res) is less than or equal to SCHAR_MAX, we’re fine.

If it isn’t: modulo the unsigned result with SCHAR_MAX, and add
it to SCHAR_MIN.

52 / 56

Buffer overflows Integer overflows and underflows

Applicability of overflow-prevention techniques

When do we need to use these techniques?

▶ All the time? Should every use of the plus (“+”) operator be
changed to, say, safe_add?

▶ None of the time?
▶ Somewhere in between?

53 / 56

Buffer overflows Integer overflows and underflows

Integer bounds in other languages – Java

▶ Java only has signed integer types – no unsigned types. The
behaviour of all types is that they “wrap” around if overflow
would occur.

▶ Since Java 8, it provides methods like Math.addExact(), which
will throw an exception if overflow or underflow would occur.

▶ The JVM can still suffer from overflow errors in underlying
C++ code – e.g. see
https://bugs.openjdk.org/browse/JDK-8233144

54 / 56

https://bugs.openjdk.org/browse/JDK-8233144

Buffer overflows Integer overflows and underflows

Integer bounds in other languages – Python

▶ Treatment of integers in Python varies from version to version.

▶ Typical approach is: use the underlying C int type by default;
however, if a value would exceed the bounds of an int, it gets
automatically promoted to an arbitrary-precision integer type

▶ How to detect overflow? One way: do the C arithmetic as
normal, then try it with the C ints cast to doubles. If the
result differs greatly, then underflow or overflow occurred.

(This technique turns up also in some older versions of the
JVM.)

55 / 56

https://en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

Buffer overflows Integer overflows and underflows

Overflow CWE

▶ Has a CWE ID – CWE-190 Integer Overflow or Wraparound
▶ a calculation can produce an integer overflow or wraparound,

but the program logic assumes the new value will always be
larger than the old

▶ if the integer is got from a user/attacker, they may be able to
deliberately trigger this with user-supplied inputs

▶ if the integer is then used to control looping, make a security
decision, allocate memory etc then the vulnerability becomes
critical

56 / 56

https://cwe.mitre.org/data/definitions/190.html

	Buffer overflows
	Integer overflows and underflows

