
Static analysis concepts Language-based security Fuzzing

CITS3007 Secure Coding
Analysis and testing

Unit coordinator: Arran Stewart

1 / 53



Static analysis concepts Language-based security Fuzzing

Highlights

▶ Avoiding vulnerabilities
▶ (Automatic) program analysis
▶ Static analysis techniques
▶ Dynamic analysis techniques
▶ Fuzzing

2 / 53



Static analysis concepts Language-based security Fuzzing

Avoiding vulnerabilities

▶ In lectures and labs, we’ve seen examples of things you should
do (e.g. sanitizing inputs) and things to be wary of
(e.g. wraparounds, overflows) when implementing software
▶ Some vulnerabilities (buffer overflows) might seem only relevant

to C – but many other languages are implemented in or use C
▶ Others (sanitization problems, integer wraparounds) are relevant

to nearly all languages.

▶ Are there any general tools or approaches for ensuring we do
the good things, and avoid the bad things?

▶ “Ensuring”? No. But there are many things that can help.

3 / 53



Static analysis concepts Language-based security Fuzzing

Avoiding vulnerabilities

▶ In lectures and labs, we’ve seen examples of things you should
do (e.g. sanitizing inputs) and things to be wary of
(e.g. wraparounds, overflows) when implementing software
▶ Some vulnerabilities (buffer overflows) might seem only relevant

to C – but many other languages are implemented in or use C
▶ Others (sanitization problems, integer wraparounds) are relevant

to nearly all languages.

▶ Are there any general tools or approaches for ensuring we do
the good things, and avoid the bad things?

▶ “Ensuring”? No. But there are many things that can help.

3 / 53



Static analysis concepts Language-based security Fuzzing

Avoiding vulnerabilities
There are things we can do during

▶ analysis & design
▶ implementation, and
▶ testing

to reduce the chance that vulnerabilities will occur in our software (and
ameliorate the effects if they do).

▶ Security is not something you can just “add in” at, e.g. the
implementation or testing phase

▶ It has to be considered at all phases of the software development
lifecycle (SDLC).

testinganalysis design implementation operation disposal

SDLC phases
4 / 53



Static analysis concepts Language-based security Fuzzing

Avoiding vulnerabilities

testinganalysis design implementation operation disposal

SDLC phases

▶ CITS3007 focuses on the implementation and testing phases.

But in future lectures, we will briefly look at secure development
methodologies, which cover all phases of the SDLC.

5 / 53



Static analysis concepts Language-based security Fuzzing

Analysis & design

▶ Security requirements can be developed in tandem with threat
modelling – where we identify potential security threats.

▶ Threat modelling asks the question, “What could go wrong?”
▶ It helps us identify threats, and also mitigations we’ll put in

place – we’ll do that during later phases of the SDLC.
▶ Problems with design can often be found by human review of

the design.

6 / 53



Static analysis concepts Language-based security Fuzzing

Implementation and testing

During implementation and testing, we’ll implement mitigation
strategies identified earlier.

We also can use static and dynamic analysis techniques to help
identify potential problems in our code, and thorough testing to
identify breaches of our security requirements.

7 / 53



Static analysis concepts Language-based security Fuzzing

Program analysis

What is it?

▶ the process of using automated tools to analyse the behaviour
of computer programs for particular properties
▶ e.g. correctness, security, speed, termination

Areas where it’s used:
▶ Compiler development

▶ Compilers have to analyse code, and turn it into executable
binaries or bytecode

▶ Verification
▶ We may want to verify that a program is correct (implements

its specification properly)
▶ Security

▶ We want to find code that can lead to vulnerabilities

8 / 53



Static analysis concepts Language-based security Fuzzing

Program analysis approaches

▶ Static analysis: performed without executing the program.
▶ Uses the program’s static artifacts (usually, source code, but

sometimes binary executables)
▶ Dynamic analysis: performed at runtime.

▶ Actually runs the program (or part of it)
▶ Typically instruments the code (adds extra instructions to the

compiled code)
▶ Hybrid: a mix of the previous two.

9 / 53



Static analysis concepts Language-based security Fuzzing

Related techniques

If a human analyses the code, we don’t usually call that “program
analysis”.

▶ In the static case, we just call it “reading the code”, or “code
review”

▶ In the dynamic case, we call it “debugging” or “manually
running tests”

The borderline can be fuzzy, though. Program verification isn’t
completely automated, for instance – it requires a great deal of
human input.

10 / 53



Static analysis concepts Language-based security Fuzzing

Static analysis examples

Static analysis: analysis performed without executing the program.

Some examples:

▶ Flawfinder
▶ Developed by David A. Wheeler, director of security at the

Linux Foundation
▶ clang-tidy

▶ Created by the developers of the Clang compiler

We use both of these in the lab on “static analysis” – they warn
about problematic code constructs.

Static analysers are also sometimes called “linters” or “bugfinders”
(depending on their focus).

11 / 53

https://dwheeler.com/flawfinder/
https://clang.llvm.org/extra/clang-tidy/


Static analysis concepts Language-based security Fuzzing

Static analysis examples

Many IDEs and editors provide ways of integrating warnings from
static analysers into your development environment

▶ e.g. They may show warnings as red underlines in your code,
with “hoverable” details

12 / 53



Static analysis concepts Language-based security Fuzzing

Static analysis examples

Static analysis does cover a very wide range of techniques.

From very very simple – e.g. grepping code for functions like strcpy,
known to be unsafe – to very complex.

13 / 53



Static analysis concepts Language-based security Fuzzing

Targets of static analysis

▶ Many static analysis programs operate on the source code for a
program, but some instead analyse compiled binaries.

For example, the Ghidra framework can be used to analyse binary
code.

We won’t use any binary analysis techniques in this unit, but they
can come in handy when doing (for instance) penetration testing.

14 / 53

https://github.com/NationalSecurityAgency/ghidra


Static analysis concepts Language-based security Fuzzing

Dynamic analysis

Analyses which require the program to be run in order to work.

A common approach is to inject extra instructions into the code
when it is compiled, to answer questions like “Do any array accesses
go out of bounds when we run this program?”

15 / 53



Static analysis concepts Language-based security Fuzzing

Dynamic analysis examples

Valgrind:

▶ Actually a suite of analyses – the most common is memcheck –
plus a framework for developing new ones.

▶ Simulates the effect of every instruction in the original program
(fairly slow)

▶ Doesn’t require you to re-compile your code with
instrumentation: uses the original binary, and inserts extra
instructions (e.g. for out of bounds writes)

16 / 53

https://valgrind.org


Static analysis concepts Language-based security Fuzzing

Dynamic analysis examples

Sanitizers, developed by Google

▶ code is actually part of LLVM, a compiler infrastructure
framework

▶ the sanitizers:
▶ AddressSanitizer (ASan) – detects buffer overflows and other,

similar memory errors
▶ ThreadSanitizer (TSan) – detects data races and deadlocks)
▶ UndefinedBehaviorSanitizer (UBSan) – detects various sorts of

undefined behaviour
▶ plus many others

▶ incorporated into both the clang and gcc compilers
▶ require you to recompile your program and link to special

libraries, so your code can be properly instrumented (i.e., have
additional code inserted)

17 / 53

https://github.com/google/sanitizers
https://llvm.org


Static analysis concepts Language-based security Fuzzing

Dynamic versus static analysis

Dynamic analysis can be very fast and precise.

▶ e.g. Google sanitizers will give very precise reports on where
(say) undefined behaviour or out-of-bounds memory access
occurs, and usually only add about 10-15% to runtime

▶ However, you’re limited to only the code that was actually
executed – you may have very limited coverage.
▶ If you don’t run your program with the right inputs, you may

never discover a particular vulnerability
▶ One solution to this: instrumented fuzzing (more on this later)

18 / 53



Static analysis concepts Language-based security Fuzzing

Dynamic versus static analysis

Static analysis can have perfect coverage (since the whole source
code is available)

Doesn’t need to run the program – may even be able to detect
problems “as-you-type” (ALE in vim will do this)

However, answering some questions (e.g. “Will array accesses ever
be made out of bounds?”) are intractable for static analyses.

19 / 53



Static analysis concepts Language-based security Fuzzing

Static analysis concepts

20 / 53



Static analysis concepts Language-based security Fuzzing

Dynamic versus static analysis

Static analysis cannot be as precise as dynamic.

if halts(f):

reveal_all_the_secrets()

Instead, static analyses approximate the behaviour of the program:
they provide either false positives or false negatives.

False positive Reporting a program has some property (e.g. a
vulnerability) when it does not

False negative Reporting a program does not have some property
when it does

21 / 53



Static analysis concepts Language-based security Fuzzing

Soundness and completeness

Capabilities of static analyses are often described in terms of
soundness and completeness.1

An analyser can be sound in relation to some runtime property of a
program.

sound If the analyser asserts that a program has property P,
then the program does have property P. The analyser
is never wrong about this.

1The terms comes from logic. “sound” ≈ “says true things”, “complete” ≈
“all true things are said”)

22 / 53



Static analysis concepts Language-based security Fuzzing

Soundness

sound If the analyser asserts that a program has property P,
then the program does have property P. The analyser
is never wrong about this.

But:

▶ It might be “over-scrupulous” – sometimes say that programs
which do have property P, actually do not.

▶ An analyser could be trivially sound, by simply never saying a
program has property P – it would never be wrong. . .

23 / 53



Static analysis concepts Language-based security Fuzzing

Soundness example
▶ Suppose a static analyser, DivDetector,

analyses programs and tries to assess
whether they have property DivGood:
“At runtime, this program will never
encounter a division-by-zero exception”.

▶ When fed a program, DivDetector may
say “Yes, it has property DivGood” or
“No, it does not”.
(Some analysers might also say “I don’t
know”, or remain silent.)

✓ If DivDetector never lies when it says "Yes, this program has
property DivGood", then it is sound.

✘ But it might say "No, this program does not have property
DivGood", and be wrong.

24 / 53



Static analysis concepts Language-based security Fuzzing

Soundness example

If we frame the problem as “identify programs with property
DivGood”, then DivDetector can suffer from false negatives – it
sometime might say a program doesn’t have property DivGood,
when it does.

25 / 53



Static analysis concepts Language-based security Fuzzing

Completeness

complete If a program has property P, then the analyser always
detects it.
(An analyser could be trivially complete, by saying
everything. e.g. It says “This program is correct”,
AND “This program is incorrect”.)

But:

▶ It may be “over-eager” – might sometimes say that programs
which don’t have property P, actually do.

▶ It could be trivially complete, by saying every program has
property P – it would never “miss” a program.

26 / 53



Static analysis concepts Language-based security Fuzzing

Compromises

What we would like is for an analysis to be both sound and
complete – it says exactly all the true things.

But it is impossible for any algorithm to determine (for all
programs) any non-trivial semantic property of a program – this is
Rice’s theorem.

So instead, analysers will have to compromise on one or the other
(or both)

▶ Sometimes they say a program has some property P, but it
doesn’t

▶ Sometimes a program will have property P, but the analyser
won’t report it

27 / 53

https://en.wikipedia.org/wiki/Rice's_theorem


Static analysis concepts Language-based security Fuzzing

Compromises

They could also be sound or complete “up to certain assumptions”.

e.g. A static analyser might be sound, when detecting some property
of Java programs, as long the program doesn’t use reflection.
(If it does, the analyser might give wrong answers, and “let in”
some programs which don’t actually have the property.)

28 / 53



Static analysis concepts Language-based security Fuzzing

Phrasing

What sort of error you think an analyser is making depends on how
you phrase the question.

If your analyser is looking for property P (“. . . never divides by
zero”), but sometimes classifies programs as dividing by zero when
they don’t, then it’s incomplete.

But if your analyser is looking for property ¬P (“. . . will divide by
zero at least once”), but sometimes classifies programs as dividing
by zero when they don’t, then it’s unsound.

Usually when we say something is “sound”, we tend to be talking
about desirable properties.

So it’d be more typical to say your analyser is sound, but incomplete.

29 / 53



Static analysis concepts Language-based security Fuzzing

Example – compilers

For statically typed languages, the compiler guarantees that type
errors won’t occur at runtime.

But it does so by forbidding many programs in which type errors
never would have occurred at runtime.

// java method

void do_a_thing() {

int n = 1;

if (1 + 1 == 3) {

n == "hello";

}

}

30 / 53



Static analysis concepts Language-based security Fuzzing

Example – compilers

// java method

void do_a_thing() {

int n = 1;

if (1 + 1 == 3) {

n == "hello";

}

}

Compiler writers would probably say the question being asked is, “Is
the program well-typed (i.e., no type errors occur at runtime)?”

The compiler is sound (if it says a program is well-typed, it is), but
incomplete (sometimes a program would actually be well-typed, but
the compiler says it is not).

31 / 53



Static analysis concepts Language-based security Fuzzing

Example – compilers

But it’s just as valid to flip the question, and ask “Will the program
exhibit a type error at runtime?”.

Then the compiler is complete – when type errors occur, they are
always reported – but it is not sound (sometimes the compiler says
a type error would occur, when it actually won’t).

32 / 53



Static analysis concepts Language-based security Fuzzing

Reporting (e.g. security) errors
Does a program have property GoodProperty (e.g. BadThing never
happens)?

complete incomplete

sound

Reports all occurrences
(If GoodProperty is there, analyser
says it exists)
No false alarms
(If analyser says GoodProperty ex-
ists, it does exist)
Undecidable

May miss occurrences
(If GoodProperty is there, analyser
may or may not say so)
No false alarms
(If analyser says GoodProperty ex-
ists, it does exist)
Decidable

unsound

Reports all occurrences
(If GoodProperty is there, analyser
says it exists)
Possible false alarms
(Analyser reports property, but it
may not exist)
Decidable

May miss occurrences
(If GoodProperty is there, analyser
may or may not say so)
Possible false alarms
(Analyser reports property, but it
may not exist)
Decidable

33 / 53



Static analysis concepts Language-based security Fuzzing

Decidability

“Undecidable” means no algorithm (guaranteed to terminate) exists.

But if we wanted, instead of compromising on soundness or
completeness, we could compromise on terminability. (Sometimes,
the algorithm might run forever).

(Example: some type checker algorithms are, in fact, not guaranteed
to terminate; though generally, it turns out that for all “normal”
programs written by and of interest to humans, they do end up
terminating.)

34 / 53



Static analysis concepts Language-based security Fuzzing

Static analysis in practice

Since perfect solutions aren’t possible

▶ analysers give approximate results (compromise on soundness
or completeness), or

▶ require manual assistance, or
▶ have timeouts (analysis could in theory run forever)

35 / 53



Static analysis concepts Language-based security Fuzzing

Static analysis in practice

In general, programmers dislike false positives:

▶ analyser reports many “problems”, most of which are false
alarms

We will see an example of this in the lab with Flawfinder and
clang-tidy.

Many of the signed-to-unsigned conversions reported are probably
harmless, but all the reports obscure bigger problems.

36 / 53



Static analysis concepts Language-based security Fuzzing

Sorts of static analysis

Static analysers for many different tasks:

▶ Type checking
▶ Style checking
▶ Property checking (ensuring some property holds – e.g. no

deadlocks, bad behaviour of some sort)
▶ Program verification (ensuring correct behaviour w.r.t some

specification)
▶ Bug finding (detecting likely errors)

37 / 53



Static analysis concepts Language-based security Fuzzing

Sorts of static analysis
▶ Type checking
▶ Style checking
▶ Property checking (ensuring some property holds – e.g. no deadlocks,

race conditions, bad behaviour of some sort)
▶ Program verification (ensuring correct behaviour w.r.t some

specification)
▶ Bug finding (detecting likely errors)

All are useful.

▶ Type checking prevents runtime errors
▶ Style checking makes code easier for humans to review
▶ Property checking can avoid some security bugs
▶ Program verification (doesn’t ensure our design or use of e.g. crypto

functions is correct though – just correctness w.r.t spec)
▶ Bug finding (use for secure coding is obvious)

38 / 53



Static analysis concepts Language-based security Fuzzing

Type systems

Powerful type systems can provide very strong guarantees about
program behaviour.

▶ Memory-safe languages (Java, ML, Haskell, Rust): memory
corruption (if the language is properly implemented, and
programmer restricted to safe parts of language) impossible

But

▶ All these languages do, in practice, provide “escape hatches” (if
nothing else, they all allow C routines to be called which aren’t
themselves type-checked)

▶ Programmers may regard type system as annoying and overly
restrictive

39 / 53



Static analysis concepts Language-based security Fuzzing

Type systems

Statically checked type systems are modular

▶ small pieces can be checked
▶ the pieces are put together, and the interfaces are checked

One “holy grail” of type system + security research: are there type
systems which would provide compositional guarantees for security
properties?

40 / 53



Static analysis concepts Language-based security Fuzzing

Style checking

Type systems are part of the language, but style checking covers
good practice.

Usually covers

▶ coding standards (layout, bracketing)
▶ naming conventions (e.g. snake_case, camelCase,

SCREAMING_SNAKE_CASE)
▶ checking for dubious code constructs (e.g. in Python, use of

eval())

Example tools:

▶ clang-format, clang-tidy (C and C++)
▶ pylint, black (Python)
▶ checkstyle, findbugs, PMD (Java)
▶ ShellCheck (Bash)

41 / 53



Static analysis concepts Language-based security Fuzzing

Style checking

Most style checkers allow you to customize what rules are applied,
and to exclude particular files, functions or lines from being checked

e.g. for pylint:

pylint: disable=some−message

42 / 53



Static analysis concepts Language-based security Fuzzing

Language-based security

43 / 53



Static analysis concepts Language-based security Fuzzing

Language-based security

The idea here is to use language features to check for
application-level attacks

One example: taint tracking.

Can be static or dynamic

We add security labels to data inputs (sources) and data outputs
(sinks).

tainted Data from unsafe sources (e.g. user input)

Or data derived from or influenced by tainted data

untainted Data we can safely output or use

44 / 53



Static analysis concepts Language-based security Fuzzing

Taint tracking

To switch something from tainted to untainted, it has to go through
particular sanitization functions.

Examples:

▶ Perl provides a “taint mode” (https://perldoc.perl.org/perlsec)
▶ Taintdroid – modified Android runtime, tracks data flows at

runtime (https://github.com/TaintDroid)

45 / 53

https://perldoc.perl.org/perlsec
https://github.com/TaintDroid


Static analysis concepts Language-based security Fuzzing

Type-checking information flow

Idea: define a type system which tracks security levels of variables in
the program, and adding levels to sources and sinks. Security levels
may be:

High

▶ Sensitive information, e.g., personal details
▶ Any other data that

▶ is computed directly from high data
▶ occurs in a high context (high test in if)

Low

▶ Public information, e.g., obtained from user input

46 / 53



Static analysis concepts Language-based security Fuzzing

Fuzzing

47 / 53



Static analysis concepts Language-based security Fuzzing

Dynamic analysis – fuzzing

▶ Many test cases are input into the target application
▶ Application is monitored for errors (e.g. crashes, hangs)

48 / 53



Static analysis concepts Language-based security Fuzzing

Types of fuzzing

▶ Mutation based (“dumb”)
▶ Generation based (“smart”)
▶ Evolutionary

49 / 53



Static analysis concepts Language-based security Fuzzing

Mutation Based Fuzzing

▶ Little or no knowledge of the structure of inputs
▶ Not good for inputs with checksums, challenge responses, etc.

▶ New inputs may be completely random or follow some
▶ Very easy to set up
▶ Depends on inputs provided

50 / 53



Static analysis concepts Language-based security Fuzzing

Generation Based Fuzzing

▶ Test cases generated from some description, rules or grammar
▶ Knowledge of input structure usually gives better results than

mutation
▶ Usually trickier to set up

51 / 53



Static analysis concepts Language-based security Fuzzing

Evolutionary Fuzzing

▶ Attempts to generate inputs based on the response of the
program

52 / 53



Static analysis concepts Language-based security Fuzzing

Further reading

▶ OWASP discussion and list of static analysis tools
▶ Rival and Yi, Introduction to Static Analysis (2020, MIT Press)
▶ Zeller et al, The Fuzzing Book (available online)

53 / 53

https://owasp.org/www-community/Source_Code_Analysis_Tools
https://mitpress.mit.edu/9780262043410/introduction-to-static-analysis/
https://www.fuzzingbook.org

	Static analysis concepts
	Language-based security
	Fuzzing

