
Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

CITS3007 Secure Coding
Concurrency bugs and race conditions

Unit coordinator: Arran Stewart

1 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Highlights

▶ Race conditions, data races, TOCTOU bugs
▶ Files and best practices
▶ Detecting and mitigating race conditions
▶ Data races in multithreaded programs

2 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Introduction

3 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Example problem

Suppose we have a setuid program, and we want to avoid giving the
user access to a file unless they’d be able to access it normally.

Pseudocode:

res = real_uid_can_read_file("/tmp/somefile")

if not res:

raise "user doesn't have access to /tmp/somefile"

else access is OK

infile = open("/tmp/somefile", "r")

4 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Example problem

Actual C code:

int res = access("/tmp/somefile", R_OK);

if (!res)

abort();

int fd = open("/tmp/somefile", O_RDONLY);

5 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Example problem

int res = access("/tmp/somefile", R_OK);

if (!res)

abort();

int fd = open("/tmp/somefile", O_RDONLY);

▶ Uses the access(const char *pathname, int mode) function
▶ see “man 2 access” (man7.org)

▶ Checks pathname (dereferencing symbolic links) to see if the the
calling process’s real UID and GID are allowed to access the file
▶ caller specifies whether to check read, write or execute access

(or some combination)
▶ Answers question:

“If I’m a setuid binary, can the user who invoked me
read/write/execute this file?”

6 / 53

https://man7.org/linux/man-pages/man2/faccessat.2.html
https://man7.org

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Example problem
Now suppose the following timeline of events occurs:

7 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Example problem

This is called a “Time of Check to Time of Use” bug (TOCTTOU
or TOCTOU).

8 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

How to exploit

Requires fairly precise timing. BUT an attacker

▶ may be able to just run attack repeatedly until it succeeds
▶ may be able to get a notification (see man 7 inotify) when file

is created
▶ may be able to slow down the system, to give themselves more

time
▶ could overload the system with CPU-intensive tasks

9 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Terminology

race condition when the timing or order of events affects the correctness
of a piece of code, but the order of events is not controlled.
(Needn’t involve threads or memory, specifically – the bug
just described doesn’t.)

data race in languages which permit concurrent access to memory: a
situation where one thread is mutating some location in
memory, and other threads access that same location and
get or produce inconsistent or incorrect views of the same
data.
Probably a subset of “race condition” (depending how
exactly you define it).

TOCTOU bug a particular type of race condition where we check whether
something’s allowed, then use the results, but in between –
whatever resource we were checking has been swapped with
another

10 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Data race example

data race
In languages which permit concurrent access to memory: a situation
where one thread is mutating some location in memory, and other
threads access that same location and get or produce inconsistent or
incorrect views of the data.

Suppose some variable mynum is big enough that it requires two
assembly instructions to write – e.g. a 64-bit long long on a 32-bit
machine.

Thread A starts writing a value to mynum, but halfway through,
thread B reads from mynum.

Thread B will get some junk value that’s meaningless in the context
of the program.

11 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Problems

▶ Race conditions are always considered a defect or bug, because
they make our program “flaky”
▶ Our program does the right thing, if events happen in exactly

the right order – but sometimes that won’t be the case
▶ They may result in a vulnerability
▶ Historically, they have been a difficult type of bug to diagnose,

because they can be hard to reproduce

12 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Problems

TOCTOU vulnerabilities are a very common type of vulnerability
due to a race condition, but there are plenty of others – here is one.

Suppose we have the following routine for performing a bank
transfer (in Python-like pseudocode):

def perform_transfer(transfer_amount):

balance = readBalanceFromDatabase()

if transfer_amount < 0:

raise Exception("Invalid transfer amount")

new_balance = balance − transfer_amount

if (balance − transfer_amount) < 0:

raise Exception("Insufficient Funds")

writeBalanceToDatabase(new_balance)

13 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Problems
def perform_transfer(transfer_amount):

balance = readBalanceFromDatabase()

if transfer_amount < 0:

raise Exception("Invalid transfer amount")

new_balance = balance − transfer_amount

if (balance − transfer_amount) < 0:

raise Exception("Insufficient Funds")

writeBalanceToDatabase(new_balance)

▶ The problem with this code is that it assumes the current transaction
is the only one operating on a particular account

▶ A transfer is started by reading the balance from the database, and
at the end, we write to the database – but in between, the current
balance could have changed

▶ An attacker could use this timing issue to “give” themselves more
money (can you suggest how?)

14 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Transactions
def perform_transfer(transfer_amount):

balance = readBalanceFromDatabase()

if transfer_amount < 0:

raise Exception("Invalid transfer amount")

new_balance = balance − transfer_amount

if (balance − transfer_amount) < 0:

raise Exception("Insufficient Funds")

writeBalanceToDatabase(new_balance)

▶ The problem arises because multiple threads of control are allowed to
mutate a shared resource (the database).

▶ That’s bad – the “low-level” solution is to lock the resource, so it can
only be used by one thread at a time. Different languages offer
different synchronization primitives for doing so (e.g. mutexes,
semaphores)

▶ Databases typically offer a higher-level way of protecting against race
conditions, transactions.

15 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Transactions
def perform_transfer(transfer_amount):

balance = readBalanceFromDatabase()

if transfer_amount < 0:

raise Exception("Invalid transfer amount")

new_balance = balance − transfer_amount

if (balance − transfer_amount) < 0:

raise Exception("Insufficient Funds")

writeBalanceToDatabase(new_balance)

▶ We mark a transaction using some sort of start_transaction() and
end_transaction() procedure.
▶ The semantics of transactions are: “A transaction is atomic –

either the whole transaction occurs without error, or else the
entire thing is rolled back and has no effect”

▶ Rather than locking the database, the DBMS “optimistically” allows
multiple transactions to occur at once – but if it detects that they
would interfere with each other, only one is allowed to proceed (the
others are aborted)

16 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Race conditions and file handling

17 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Files and race conditions

▶ Files and directories are very common resources that can cause
race conditions.

▶ Typically, multiple processes can open a file at once
▶ though some OSs provide for enforced file-locking
▶ Unix-like systems provide “advisory” (non-enforced) file locking

via fnctl() (see man 2 fnctl)

Vulnerable to:

▶ Symbolic linking exploits
▶ Temporary file open exploits

18 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Symlink exploits

The TOCTOU bug we saw at the start is a symlink exploit: an
attacker alters some file by replacing it with a symbolic link.

19 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Flakiness of filenames

Relying on a file name to always refer to the same file is very
unreliable.

▶ Suppose we have fileA and fileB, and your program calls, say,
stat (man 2 stat) to get some information about them (size or
owner)

▶ But by the time your program accesses them, I’ve already run

mv fileA tmp; mv fileB fileA; mv tmp fileA

▶ The files have been swapped

stat function

int stat(const char *pathname, struct stat *statbuf)

20 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

file paths vs inodes

Whenever a function refers to a file by file path, the kernel resolves the file
path into something called the inode – a structure in the file system that
uniquely describes some bunch of data on disk (like a file or directory).

Filenames might change (and multiple filenames might point to a single
inode) – but once we’ve resolved a file path, opened the file and got an
inode, we know it always refers to the same file.

21 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

file descriptors and inodes

And a file descriptor (as returned by
int open(const char *pathname, int flags)) will refer to some
specific inode.

So in general, if we want to ensure a file hasn’t been “swapped out
from under us”, we should prefer functions that take file descriptors,
rather than file names.

// prefer:

int fstat(int fd, struct stat *statbuf);

// over:

int stat(const char *pathname, struct stat *statbuf);

22 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

file-descriptor–based functions

For instance,

rather than prefer instead:

chmod fchmod

chown fchown

unlink unlinkat

rename renameat

23 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Example of use – fchmod

// creates with default perms 0666 (−rw−rw−rw−)
FILE *fp = fopen("somefile", "w+")

if (!fp)

abort();

// use f.d. to ensure we're always referring to same file

int fd = fileno(fp);

if (fchmod(fd, 0600) == −1)

abort();

24 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Temporary file bugs

char buf[1024];

strcpy(buf, "/tmp/tmpXXXX");

// use buf as template for a tempfile name

mktemp(buf)

if (buf[0] == '\0')

abort();

// create file if it doesn't exist

// and open rw

int fd=open(buf, O_CREAT | O_RDWR, 0700);

▶ mktemp() (see man 3 mktemp) replaces the “XXXX” with random
data, such that the new name does not exist

▶ If it couldn’t generate a file that doesn’t exist, buf is set to an
empty string

▶ Possible problems here?

25 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Temporary file bugs

char buf[1024];

strcpy(buf, "/tmp/tmpXXXX");

// use buf as template for a tempfile name

mktemp(buf)

if (buf[0] == '\0')

abort();

// create file if it doesn't exist

// and open rw

int fd=open(buf, O_CREAT | O_RDWR, 0700);

▶ mktemp() (see man 3 mktemp) replaces the “XXXX” with random
data, such that the new name does not exist

▶ If it couldn’t generate a file that doesn’t exist, buf is set to an
empty string

▶ Possible problems here?
25 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Temporary file bugs

char buf[1024];

strcpy(buf, "/tmp/tmpXXXX");

mktemp(buf)

if (buf[0] == '\0')

abort();

int fd=open(buf, O_CREAT | O_RDWR, 0700);

▶ The problems are bad enough that the man page for mktemp says “Never
use mktemp()” (though not til you get to the “BUGS” section).

Problem 1:

▶ some implementations replace the X’s with the process ID plus a single
letter – very easy to guess

▶ Others use all random numbers for the X’s
▶ But an attacker may be able to force creation of a particular filename, by

using up all the other combinations
(Especially if you don’t have many X’s. 1000 files is not at all many.)

26 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Temporary file bugs

char buf[1024];

strcpy(buf, "/tmp/tmpXXXX");

mktemp(buf)

if (buf[0] == '\0')

abort();

int fd=open(buf, O_CREAT | O_RDWR, 0700);

Problem 2:

▶ There’s a race condition – we ask for a name, and then open it
▶ But in between, an attacker might create a file with the same name
▶ They might be able to inject malicious content into the file, or read

confidential data from it

Recommended replacement:

▶ int mkstemp(char *template);
▶ Creates and opens a file, and gives us a file descriptor

27 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Temporary file best practices

▶ Never reuse filenames, especially temporary files
▶ Use random file names for temporary files, using

cryptographically strong random number generators
▶ Use mkstemp() instead of mktemp(), tempnam(), etc.
▶ Unlink (delete) your temporary files as early as possible

▶ Reduces the window in which attacks can occur
▶ If possible, create your temporary files inside a temporary

directory to which only you have access

28 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Detecting and mitigating race conditions

29 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Mitigating race conditions

Multiple approaches to mitigating a race condition:

▶ Remove concurrency
▶ Eliminate the shared resource
▶ Control access to the shared resource, so that it can’t be

unexpectedly changed

30 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Mitigating race conditions

Remove concurrency

▶ Not always possible (e.g. we generally can’t suddenly make an
OS only have one process at a time)

▶ But for e.g. multithreaded programs: if we can remove
threading completely, we make the program much easier to
reason about

▶ If we can reduce the window of time in which races could
occur, that also is an improvement

▶ We may be able to replace a non-atomic operation(s)
(mktemp() and open()) with an atomic one (mkstemp)

31 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Mitigating race conditions

Eliminate the shared resource

▶ Again, not always possible
▶ But: we should consider if we can reduce the number of shared

resources we create.
▶ Can we use file descriptors instead of file names?
▶ Can we avoid use of shared directories (such as /tmp)?
▶ Could we e.g. use in-memory structures instead of files?

▶ mmap (see man 2 mmap) will let us view a file as a void* buffer of
memory

▶ memfd_create (see man 2 memfd_create) creates an in-memory
buffer, and lets us treat it like a file

▶ With appropriate flags, mapped memory can be shared with
child or sibling processes

32 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Mitigating race conditions

Race conditions arise because the shared resource is mutable –
multiple threads of control can change it in inconsistent ways.

Rather than get rid of it entirely, perhaps we can make it immutable.

Example:

▶ In Java, we can make collections immutable
▶ e.g. to get an immutable List from an existing one, use

List<Integer> immList = Collections.unmodifiableList(myList);

▶ It’s now safe to access immList from multiple threads, since it’s
guaranteed never to change

33 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Mitigating race conditions – locks

Control access to the shared object, so that it can’t be unexpectedly
changed

▶ We may be able to enforce a lock on the shared object
▶ Hard to do this for files – but for e.g. variables in memory, many

languages offer locks or synchronized sections.

34 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Detecting race conditions

Often difficult to detect and reproduce.

Approaches:

▶ static analysis
▶ dynamic analysis

35 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Detecting race conditions

flawfinder will detect some constructs that can lead to race
conditions (see man flawfinder):

▶ CWE-362: Concurrent Execution using Shared Resource with
Improper Synchronization (“Race Condition”)

36 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Detecting race conditions

For data races – one of the Google sanitizers is ThreadSanitizer
(TSan)

▶ Helps detect data races.
▶ Typically slows program down by 5–10 times, uses 5–10 times

more memory
▶ To use, compile and link with -fsanitize=thread
▶ By default, if a bug is detected, prints an error message to

stderr.

37 / 53

https://clang.llvm.org/docs/ThreadSanitizer.html

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Detecting race conditions

Fuzzing has been historically mostly applied to detecting memory
errors, but can also be used for detecting concurrency errors. See:

▶ Jeong, Kim, Shivakumar, Lee & Shin, “Razzer: Finding Kernel
Race Bugs through Fuzzing,” 2019 IEEE Symposium on
Security and Privacy (SP), doi: 10.1109/SP.2019.00017.

38 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Data races

39 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Data races

Data races occur when two or more threads access some shared
variable

1. (potentially) at the same time, and
2. at least one of the accesses is a write.

(If all the accesses are reads – there’s no chance for
incorrect/inconsistent data to get created.)

40 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Data races

Often result from assuming some (set of) operations are atomic
when they’re not.

▶ e.g. assuming a variable gets read/written in one CPU
instruction

41 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Java example

public class Number {

protected long number = 0;

public void add(long value) {

this.number = this.number + value;

}

}

▶ The instruction

this.number = this.number + value

ins’t guaranteed to be atomic.

▶ Other threads may get a view of this.number partway through
updates

▶ Java fix: use e.g. AtomicInteger: provides atomic methods
42 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Data races

Safe multithreaded programming is a whole unit on its own.

But we look at general approaches.

43 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Solutions – locking

In C, the “pthreads” (Posix threads) library is frequently used for
multithreaded programs.

Provides functions for creating, locking and unlocking mutexes
(mutually exclusive locks):

int pthread_mutex_init(pthread_mutex_t *restrict mutex,

const pthread_mutexattr_t *restrict attr);

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_trylock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

These are “advisory locks” – threads have to cooperate to use them
properly, by acquiring a lock before accessing data.

44 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Solutions – locking

For each bit of data you want to control access to: it’s up to you to

▶ create a mutex that controls access to that data
▶ ensure that all code that uses the data acquires a lock on it first
▶ release the lock when finished (to increase concurrency, we

generally lock the data for as short a time as possible)

45 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Solutions – locking

▶ See man pthreads for an overview.
▶ Some C textbooks may also cover threading – but others may

not (since it’s a Posix standard, not part of the C language)
▶ Since C11, there’s also a “native” C threading library, see

<threads.h> on cppreference.com
▶ Optional part of C11 – some compilers may not support it

(GCC on Linux does)
▶ Not well documented on many Linux systems – no man pages,

on the CITS3007 development environment
▶ pthreads is somewhat more flexible and powerful.

46 / 53

https://man7.org/linux/man-pages/man7/pthreads.7.html
https://en.cppreference.com/w/c/thread

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Solutions – locking

This approach is easy to get wrong.

47 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

C mutex example
From SEI, “CON43-C. Do not allow data races in multithreaded code”

Code with race conditions:

static volatile int account_balance;

void debit(int amount) {

account_balance −= amount;

}

void credit(int amount) {

account_balance += amount;

}

The -= and += operations aren’t atomic. Attacker can credit account with a large
sum of money, and simultaneously make many concurrent withdrawals. Some
withdrawals will probably fail to take effect because of the race condition.

48 / 53

https://wiki.sei.cmu.edu/confluence/display/c/CON43-C.+Do+not+allow+data+races+in+multithreaded+code

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

C mutex example
Compliant solution using C11 mutexes:

#include <threads.h>

static int acct_bal;

static mtx_t acct_lock;

// returns −1 on error

int debit(int amount) {

if (mtx_lock(&acct_lock) == thrd_error)

return −1; // error

acct_bal −= amount;

if (mtx_unlock(&acct_lock) == thrd_error)

return −1; // error

return 0; // success

}

// returns −1 on error

int credit(int amount) {

if (mtx_lock(&acct_lock) == thrd_error)

return −1; // error

acct_bal += amount;

if (mtx_unlock(&acct_lock) == thrd_error)

return −1; // error

return 0; // success

}

int main(void) {

if(mtx_init(&acct_lock, mtx_plain)

== thrd_error

)

{

/* Handle error */

}

/* ... */

}
49 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Other options

Use the <stdatomic.h> header (introduced in C11)

#include <stdatomic.h>

atomic_int account_balance;

void debit(int amount) {

account_balance −= amount;

}

void credit(int amount) {

account_balance += amount;

}

50 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Other languages

Other languages provide higher-level and more reliable constructs for
dealing with locks.

class MyClass {

private int sum = 0;

public synchronized void calculate() {

setSum(getSum() + 1);

}

// ... typical setters and getters

}

51 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Java synchronized keyword

class MyClass {

private int sum = 0;

public synchronized void calculate() {

setSum(getSum() + 1);

}

// ... typical setters and getters

}

e.g. In Java, a synchronized instance method causes Java to internally generate
a lock for objects of type MyClass; any synchronized method automatically tries
to acquire a lock when it starts, and releases it when done.

synchronized can also be used with blocks and static methods, but we don’t
cover that in this unit.

52 / 53

Introduction Race conditions and file handling Detecting and mitigating race conditions Data races

Synchronization in Python

Python does not have Java’s nice “synchronized” keyword, so you
have to write locks manually.

But the syntax is a bit more pleasant than in C (see here for details).

53 / 53

https://docs.python.org/3/library/threading.html#using-locks-conditions-and-semaphores-in-the-with-statement

	Introduction
	Race conditions and file handling
	Detecting and mitigating race conditions
	Data races

