
Design processes and principles Implementation quality Security testing

CITS3007 Secure Coding
Secure software development

Unit coordinator: Arran Stewart

1 / 53



Design processes and principles Implementation quality Security testing

Highlights

▶ Risk management
▶ Secure SDLC (software development lifecycle)
▶ Design processes
▶ Design principles
▶ Security testing

2 / 53



Design processes and principles Implementation quality Security testing

Risk management

Security is about managing risks.

No system can be perfectly secure (except perhaps one that is never
actually used).

But we can try to ensure that we bring the risk of serious security
problems occurring down to a tolerable level.

3 / 53



Design processes and principles Implementation quality Security testing

Risk management

Risk management is basically just asking the question:

▶ What can go wrong?

So that we can do something about it, before things go wrong.

General steps in all risk management processes:

▶ Identify risks
▶ Assess their likelihood and impact
▶ Rank them
▶ For all risks above our level of tolerance:

▶ Avoid/resolve, mitigate, transfer or accept

4 / 53



Design processes and principles Implementation quality Security testing

Risk management

Identifying risks:

▶ Can reduce to “filling in forms”
▶ But proper risk identification requires creativity, brainstorming,

communication with stakeholders.
▶ Needs to overcome positivity bias/groupthink

▶ Pre-mortem: Imagine we’re in the future and the system has
already failed catastrophically. Ask yourselves, how did this
arise?

5 / 53

https://en.wikipedia.org/wiki/Pre-mortem


Design processes and principles Implementation quality Security testing

Risk management

▶ Avoid/resolve the risk: completely eliminate it
▶ Mitigate the risk: reduce the likelihood or impact
▶ Transfer the risk: assign or move the risk to a third-party (e.g.

outsource, insure)
▶ Accept the risk: acknowledge the risk, and decide not to

resolve, transfer or mitigate

6 / 53



Design processes and principles Implementation quality Security testing

Incorporating security

Approaching security as something you can simply “add on” to
existing systems or processes as an extra phase or step is doomed to
failure.

The aim should be to incorporate security into existing processes, at
all stages of the software development life cycle:

▶ analysis/requirements elicitation
▶ design
▶ implementation and testing
▶ maintenance/operation
▶ disposal

7 / 53



Design processes and principles Implementation quality Security testing

Incorporating security

8 / 53



Design processes and principles Implementation quality Security testing

Incorporating security

Most of these elements of secure development assume you’re already
applying (non-security) best practices – version control, testing, etc.

If your other processes are bad, then adding on (e.g.) “secure
testing” isn’t going to make them any better.

9 / 53



Design processes and principles Implementation quality Security testing

Incorporating security

Requirements stage:

▶ Identify security goals
▶ Identify essential threats

10 / 53



Design processes and principles Implementation quality Security testing

Incorporating security

Design stage:

▶ Risk analysis
▶ Plan for secure implementation and secure testing
▶ Design review

11 / 53



Design processes and principles Implementation quality Security testing

Incorporating security

Implementation/testing stage:

▶ Code review
▶ Risk analysis for libraries used
▶ Security testing

▶ (Possibly) penetration testing

12 / 53



Design processes and principles Implementation quality Security testing

Incorporating security

Maintenance/operation:

▶ Handling reported vulnerabilities
▶ Regression testing

13 / 53



Design processes and principles Implementation quality Security testing

Incorporating security

Disposal:

▶ If the product is being disposed of – what happens to any
sensitive data?

14 / 53



Design processes and principles Implementation quality Security testing

Design processes and principles

15 / 53



Design processes and principles Implementation quality Security testing

Overview

▶ Make design assumptions explicity
▶ Ensure there are security requirements
▶ Perform threat modelling
▶ Apply principles of secure software design
▶ Conduct security reviews

16 / 53



Design processes and principles Implementation quality Security testing

Make design assumptions explicit

▶ What budget, resource, and time constraints limit the design
space?

▶ Is the system is likely to be a target of attack?
▶ Are there non-negotiable requirements (e.g. compatibility with

legacy systems)
▶ What are the expectations about the level of security the

system must adhere to?
▶ How sensitive are different sorts of data? How important is it

to protect the data?
▶ Are there any anticipated needs for future change to the

system?
▶ What performance or efficiency benchmarks must the system

achieve?

17 / 53



Design processes and principles Implementation quality Security testing

Ensure there are security requirements

These can be user stories, or more traditional requirements.

But they should set out:

▶ what the security goals for the system are
▶ whether there are competing stakeholder needs
▶ whether there are acceptable costs or trade-offs to be made
▶ any unusual requirements

The goals and requirements should be achievable!

18 / 53



Design processes and principles Implementation quality Security testing

Threat modeling

▶ Is conducted in the context of wanting to protect something of
value

▶ Process whereby potential threats (e.g. vulnerabilities) can be
identified, enumerated, and prioritized

▶ The process of then understanding and communicating those
threats (and their mitigations)

19 / 53



Design processes and principles Implementation quality Security testing

Threat modeling

Identify essential threats to a system’s security.

For example:

▶ Do we transmit customer data between client and server?
Then one threat is that it could be intercepted.

▶ Do we store sensitive customer data in a database? Then one
threat is that confidentiality of the database could be breached.

20 / 53



Design processes and principles Implementation quality Security testing

Threat modeling

STRIDE is technically just a taxonomy (plus mnemonic) for threats,
developed by Praerit Garg and Loren Kohnfelder (textbook author)
at Microsoft.

But used as part of threat modelling, for identifying and reasoning
about threats to a system.

The name is a mnemonic for categories of threats:

▶ Spoofing: attacker pretends to be someone else
▶ Tampering: attacker alters data or settings
▶ Repudiation: user can deny making attack
▶ Information disclosure: loss of personal info
▶ Denial of service: preventing proper site operation
▶ Elevation of privilege: user gains power of root use

21 / 53



Design processes and principles Implementation quality Security testing

Threat modeling

Each of these categories of threats violates some security property
we want systems to have

Spoofing Violates authenticity
Tampering Violates integrity
Repudiation Violates non-repudiation
Information disclosure Violates confidentiality
Denial of service Violates availability
Elevation of privilege Violates authorization

22 / 53



Design processes and principles Implementation quality Security testing

Threat modeling with STRIDE

STRIDE approach uses a model of the system to identify

▶ assets (valuable data and resources) that need protection
▶ flows of data through the system
▶ attack surfaces (places an attack could originate)
▶ trust boundaries (the borders between more-trusted and

less-trusted parts of the system)

23 / 53



Design processes and principles Implementation quality Security testing

Threat modeling with STRIDE

▶ For each flow / transformation / storage:
▶ Are there vulnerabilities to S T R I D E?
▶ Can this route be attacked? What is the attack surface?

▶ Design mitigations/countermeasures

24 / 53



Design processes and principles Implementation quality Security testing

Threat modeling with STRIDE

STRIDE is intended to be developer-friendly

▶ doesn’t assume we know about the end-user’s risk appetite
▶ doesn’t emphasise risk/impact assessment (developers may not

be able to do so)

More on a suggested process incorporating STRIDE later.

25 / 53



Design processes and principles Implementation quality Security testing

Some principles of secure software design

▶ Redundancy
▶ Defence in depth

▶ Exposure minimization
▶ Principle of least privilege
▶ Separation of Privilege
▶ Secure by default

▶ Economy of design

26 / 53



Design processes and principles Implementation quality Security testing

Saltzer and Schroeder

Saltzer and Schroeder (1975)’s classic principles:1

▶ Economy of mechanism: keep it simple
▶ Fail-safe defaults: the default configuration should be secure
▶ Complete mediation: check authorization, every time
▶ Open design: assume attackers get the source and spec
▶ Separation of privilege: split up responsibilities
▶ Least privilege: no more privilege than needed
▶ Least common mechanism: beware shared resources
▶ Psychological acceptability: are security ops usable?

1Saltzer, Jerome, and Michael D. Schroeder. “The protection of information
in computer systems.” Proceedings of the IEEE 63.9 (1975): 1278-1308.

27 / 53



Design processes and principles Implementation quality Security testing

Defence in depth

Combine independent layers of protection.

▶ Then, for something to be insecure/exposed, they all need to
fail.

Ensure the weakest link is secured.

28 / 53



Design processes and principles Implementation quality Security testing

Defence in depth

Example:

▶ Sandboxes/VMs
▶ Run your student assignment-checking code in a Docker

sandbox, as a non-root user, in a VM, in Singapore.
▶ Even if someone comrpomises a web-server program, there’s

limited information they have access to.

29 / 53



Design processes and principles Implementation quality Security testing

Principle of least privilege

Every [component] and every user should operate using the least
amount of privilege necessary to complete the job.1

– Jerome Saltzer

▶ Functions, programs, processes etc. should be able to access
only the information and resources they they need to do their
job

▶ e.g. If they don’t need “write” access, they shouldn’t have it

1Saltzer, Jerome H. (1974). “Protection and the control of information
sharing in MULTICS”.

30 / 53



Design processes and principles Implementation quality Security testing

Separation of Privilege

A sort of corollary of the Principle of Least Privilege.

▶ Where possible, split responsibilities between
components/processes/systems, so that no one of them has
too much power.

▶ The patterns we looked at for setuid programs are examples of
this (e.g. splitting into client/server)

31 / 53



Design processes and principles Implementation quality Security testing

Separation of Privilege

▶ Separate the system into independent modules
▶ Limit interaction between modules

32 / 53



Design processes and principles Implementation quality Security testing

Secure by default

Give things secure and/or safe values by default.

▶ Even if a user/developer does no customization, the system
shouldn’t be unsafe or insecure

33 / 53



Design processes and principles Implementation quality Security testing

Economy of design

Keep things as simple as they possibly can be (but no simpler).1
– Einstein? William of Ockham? Anonymous?

▶ The simpler the design, the easier it is to analyse and the fewer
places bugs can lurk

▶ This doesn’t mean a more complex design is worse, overall –
just that it needs to have countervailing advantages that offset
the additional complexity.

1https://quoteinvestigator.com/2011/05/13/einstein-simple/
34 / 53

https://quoteinvestigator.com/2011/05/13/einstein-simple/


Design processes and principles Implementation quality Security testing

Economy of design

Saltzer and Schroeder’s original formulation says: “Economy of
mechanism: Keep the design as simple and small as possible”.

The principle is also sometimes called “Economy of design”.

35 / 53



Design processes and principles Implementation quality Security testing

Economy of design

Minimize or hide “moving parts”.

– Michael Feathers,
https://twitter.com/mfeathers/status/29581296216

▶ Keep exposed interfaces as small as possible (information
hiding)

▶ Keep data as immutable as possible

36 / 53

https://twitter.com/mfeathers/status/29581296216


Design processes and principles Implementation quality Security testing

Complete mediation

This principle says that whenever a resource is accessed, we should
validate that the principal (user) has authorisation to access the
resource.

Can you think of a way in which traditional Unix systems do not
satisfy this principle? (Hint: think of file permissions.)

37 / 53



Design processes and principles Implementation quality Security testing

Security reviews

The software development process should incorporate reviews.

▶ A security design review involves someone assessing and
critiquing the software design for possible problems.

▶ A security code review involves the same, but for code that is
being submitted / amended.

38 / 53



Design processes and principles Implementation quality Security testing

Security reviews

When to conduct secure design reviews?

Once the design is reasonably stable.

Kohnfelder’s advice is to separate security design reviews from other
reviews (e.g. of functionality).

39 / 53



Design processes and principles Implementation quality Security testing

Security reviews

If a security review is to be useful, it has to be done carefully.

Reviewers need to

▶ study the design and supporting documents
▶ clarify where necessary and investigate further
▶ identify the highest-risk, most security-critical parts of the

system to give special attention to
▶ write up and document their findings and recommendations

The organization needs to

▶ have a process in place to ensure reviewing findings and
recommendations are followed up on and signed off.

40 / 53



Design processes and principles Implementation quality Security testing

Implementation quality

41 / 53



Design processes and principles Implementation quality Security testing

Code style

Consistent code style makes it easier to conduct code reviews.

Human reviewers shouldn’t spend their time checking for issues that
can be checked mechanically.

42 / 53



Design processes and principles Implementation quality Security testing

Code reviews

Someone other than the original developer should always sign off on
code that’s checked into version control/ merged with main
branches.

Empirically, code reviews are highly effective at preventing bugs
from getting into a software product.

43 / 53



Design processes and principles Implementation quality Security testing

Static and dynamic analysis

In previous lectures, we’ve looked at how automatic static and
dynamic analysis can be incorporated.

44 / 53



Design processes and principles Implementation quality Security testing

Don’t “roll your own” crypto

Unless you have a very good understanding of cryptography, it’s
better to make use of existing cryptography libraries.

It’s very easy to make a mistake in implementation that can render
the cryptography worthless.

45 / 53



Design processes and principles Implementation quality Security testing

Don’t reinvent the wheel

Similar principles apply to most other components, as well – if
there’s already a trusted and battle-tested implementation of
something, it’s usually better to use that than write your own.

46 / 53



Design processes and principles Implementation quality Security testing

Security testing

47 / 53



Design processes and principles Implementation quality Security testing

Security testing

Security testing should be in addition to normal functional testing.

Systems should have unit tests, integration tests and (sub-)system
tests in place.

48 / 53



Design processes and principles Implementation quality Security testing

Security testing

Test for the various things that can go wrong with implementations.

Integer overflows Can they occur? Are they detected/handled?

Memory corruption/problems Does the system handle out of
bounds pointers/values? Can the system be
overloaded by requesting it to allocate too much
memory?

Untrusted inputs Check to make sure bad/blacklisted inputs are
rejected.

Exception handling Check that when exceptions or errors occur, the
system still behaves robustly.

49 / 53



Design processes and principles Implementation quality Security testing

Security testing – fuzzing

Where possible, use fuzzing to see how your program holds up
against potential bad data.

Is it robust, or does it crash?

50 / 53



Design processes and principles Implementation quality Security testing

Security regression tests

Whenever a security vulnerability is identified and fixed, tests should
be put in place to ensure it doesn’t later get reintroduced.

(Ideally – we should improve our tests/practices so that whole class
of bugs can be avoided.)

51 / 53



Design processes and principles Implementation quality Security testing

Security system tests

Some types of system testing:

▶ Recovery testing
▶ forces the software to fail in a variety of ways and verifies that

recovery is properly performed
▶ Stress testing

▶ executes a system in a manner that demands resources in
abnormal quantity, frequency, or volume

▶ Performance testing
▶ test the run-time performance of software within the context of

an integrated system
▶ Penetration testing

▶ simulate an attack on the system
(is a whole subject of its own – not covered here)

52 / 53



Design processes and principles Implementation quality Security testing

Security system tests

▶ Recovery testing
▶ Stress testing
▶ Performance Testing

We can use these sorts of testing to try and avoid disruptions of
availability.

When the system is under high load, are excessive resources
consumed?

If availability is important, we might also use third party content
delivery networks (CDNs).

53 / 53


	Design processes and principles
	Implementation quality
	Security testing

