CITS3007 Secure Coding
Secure software development

Unit coordinator: Arran Stewart

1/68

Highlights

> Testing basics
> API design and coding fundamentals
» Threat modelling with STRIDE

2/68

Testing and APIs
0000000000000 000000

Testing and APls

3/68

Testing and APIs
0000000000000 000000

Overview

» What is the purpose of testing?

4/68

Testing and APIs
0000000000000 000000

What is testing? Why test?

> Testing is a systematic attempt to find faults in a software

system in a planned way.
> “Faults”, or “defects”, are anything in the system that causes it
to behave in a way different from its specification.

» We test because it's much cheaper (monetarily, and in cost to
an organization's reputation) to find faults early, before
software is released, than after

5/68

Testing and APIs
000@000000000000000

Testing functions

» How do we know what a function is supposed to do?
= Refer to its documentation.
> Could be

> a man page (e.g. for strlen)
> extracted APl documentation

6/68

Testing and APIs
0000e00000000000000

Testing functions

NAME
strlen — calculate the length of a string
SYNOPSIS
#include <string.h>
size_t strlen(const char xs);
DESCRIPTION
The strlen() function calculates the length of the string pointed
to by s, excluding the terminating null byte ('\0').
)

> Are there any implicit requirements here?

7/68

Testing and APIs
00000@0000000000000

APl documentation systems

> An APl comprises all functions, variables, and macros that are
publicly available and documented as such
> If a function says — “this is not part of the API" — you rely on it
at your own risk
> Many languages come with APl documentation generation
tools

> e.g. Javadoc for Java, Pydoc and Sphinx for Python, Godoc for
Go

> C does not
» Common tools used to extract C APl information include
Doxygen and cldoc (based on the Clang compiler)

8/68

https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
https://docs.python.org/3/library/pydoc.html
https://pkg.go.dev/golang.org/x/tools/cmd/godoc
https://www.doxygen.nl
http://jessevdk.github.io/cldoc/

Testing and APIs
0000008000000 000000

Doxygen

Doxygen extracts API information from specially marked up
comments — documentation blocks.

/*x @brief Sets the position of the cursor to the
* position (row, col).
*
* Subsequent calls to putbytes should cause the console output to
* begin at the new position. If the cursor is currently hidden, a call
* to set_cursor() must not show the cursor.
*
* @param row The new row for the cursor.
* (@param col The new column for the cursor.
*/
void set_cursor(int row, int col);
y.

9/68

Testing and APIs
0000000 @00000000000

Documentation blocks vs comments

> In C, APl documentation is normally embedded in C comments
> Do not think of them as “comments” — they serve an entirely
different purpose
» Comments are for maintainers and implementers of the code
> Explain why and how something is implemented
» Should be brief, and not clutter the code
» Documentation is for users of the code
> Explains what the callers must do, and what they can expect
» Can be as extensive as needed

10/68

Testing and APIs
0000000 0@0000000000

API contents

What should go in the API documentation?

> The preconditions — any conditions which should be satisfied by
the caller when the function is called.

> The postconditions — the return value of the function, and any
changes the function makes to the system state (“side effects”)

The specification for a function is like a contract between the caller
of the function and the implementer:
“If you, the caller, satisfy the preconditions, then I, the
implementer, promise the postconditions will be true after-
wards.”

If the preconditions are not satisfied, the behaviour of the function
is undefined.

11/68

Testing and APIs
000000000 @000000000

APl contents — bsearch

bsearch - binary search of a sorted array

#include <stdlib.h>

void *bsearch(const void *key, const void x*base,
size_t nmemb, size_t size,
int (xcompar) (const void *, const void x));

Description

The bsearch() function searches an array of nmemb objects, the initial member
of which is pointed to by base, for a member that matches the object pointed to
by key. The size of each member of the array is specified by size.

The contents of the array should be in ascending sorted order according to the

comparison function referenced by compar. The compar routine is expected to

have two arguments which point to the key object and to an array member, in

that order, and should return an integer less than, equal to, or greater than zero
if the key object is found, respectively, to be less than, to match, or be greater
than the array member.

v

12/68

Testing and APIs
000000000 0@00000000

APl contents — bsearch

bsearch - binary search of a sorted array

Return value
The bsearch() function returns a pointer to a matching member of the array, or
NULL if no match is found. If there are multiple elements that match the key,

the element returned is unspecified.

13/68

Testing and APIs
00000000000 @0000000

Tests in C

What do tests look like in C?

// test of strlen

const char * s = "somestring";
size_t expected_result = 10;
size_t actual_result = strlen(s);

if (expected_result != actual_result) {
fprintf(stderr,
"%s:%d: expected len to be %zd, but got %zd\n",
__FILE _,
__LINE__,

expected_result,
actual_result
)E
exit (EXIT_FAILURE);

14 /68

Testing and APIs
000000000000 e000000

“Arrange, Act, Assert”

When writing tests, it's useful to follow the “Arrange, Act, Assert”
pattern:

Arrange prepare any needed resources (variables, data
structures, files, external programs, etc.)

Act invoke the behavior we want to test. (In C: calling a
function.)

Assert Look at the resulting state of the system and see if it
is what we expected.

15/68

Testing and APIs

0000000000000 e00000

Testing frameworks

> The disadvantage of the strlen test we saw before is that the
program exits once a test is failed — annoying, if multiple tests
need to be run

> Testing frameworks may handle tasks including

>
>
>

identifying and running a user-selected set of the tests

helping ensure the system is in a known state before a test is run
providing developers with utility functions so they can write the
“Arrange” and “Assert” parts of a test

providing “mocks” for expensive or hard-to-use parts of the
environment

reporting tests results in a useful format (either human- or
machine-readable)

16 /68

Testing and APIs
0000000000000 0e0000

check

In labs, we will use the Check testing framework.
Install with:

sudo apt—get install check

There are many others, but Check has a number of advantages:

» Doesn't require any special build tools — gcc (and Make, if
desired) are enough
> Protects the address space of the program under test using fork

17/68

https://libcheck.github.io/check/

Testing and APIs
0000000000000 00e000

Address space problems

In C, testing is more difficult, because the testing framework runs in
the same address space as the function being tested.

If the function being tested corrupts memory, it could prevent the
testing routines from working.

Check addresses this by fork-ing off a separate copy of the program
for each test —

= every test has its own address space.

18/68

Testing and APIs
0000000000000 000e00

Testing using check

> Easiest way: write tests in a test suite (“.ts") file, and use the
checkmk program to convert them into full .c code

#suite adjust_score_tests
#tcase arithmetic_testcase

#test arithmetic_works
int m = 3;
int n = 4;
int expected = 7;
int actual = m + n;
ck_assert_int_eq(actual, expected);

19/68

Testing and APIs
0000000000000 0000eO

Compiling and running tests

We usually want to enable protective features and sanitizers

= if a function fails, it fails as early and obviously as possible.

compile

$ gcc —g —std=cll —pedantic —Wall —Wextra —Wconversion \
—fno—omit—frame—pointer \
—fstack—protector—strong \
—fsanitize=address,undefined, leak \
—C —0 myprog.o myprog.c

$ gcc —g —std=cll —pedantic —Wall —Wextra —pthread \
—fno—omit—frame—pointer \
—fstack—protector—strong \
—fsanitize=address,undefined, leak \
—C —0 mytests.o mytests.c

20/68

Testing and APIs
0000000000000 00000®

Compiling and running tests

link

$ gcc —o mytests mytests.o myprog.o \
—Llcheck_pic —pthread —lrt —lm —lsubunit \
—fsanitize=address,undefined, leak

run

$./mytests

Running suite(s): adjust_score_tests

100%: Checks: 2, Failures: 0, Errors: 0
mytests.ts:65:P:arithmetic_testcase:arithmetic_works:0: Passed
mytests.ts:91:P:filesize works_testcase:filesize small_works:0: Passed

21/68

Testing and APIs
@®00000000000000000

Invariants and errors

Invariants and errors

22/68

Testing and APIs
0O@0000000000000000

Invariants and errors

Aggregate types

» Why do we put data in structs, in C?
(Or in classes, in Python, Java or C++.)

> s it just convenience — a way of collecting several other data
types together?

23/68

Testing and APIs
000000000000 000000

Invariants and errors

Aggregate types

In very simple cases it might be only for convenience.
But usually,

a. the data in the struct is intended to mean something
(it's not just collection of disparate bits of data)

b. not all possible values of the struct members will have a
sensible meaning.

How can we make sure that our data is meaningful?

24/68

Testing and APIs
0000000000000 0000

Invariants and errors

Example struct

A date type

struct date {
int year;
int month;
int day;

3

A common example is a struct for representing a date.
How can we know what the intended meaning of a date struct is?
Are all possible values of year, month and day likely to be

meaningful?

25 /68

Testing and APIs
0O000e0000000000000

Invariants and errors

Example struct

/*x Represents a date in the proleptic Gregorian calendar.

*
*
*
*
*
*
*
*
X
*
*

‘yvear ' should hold a valid year. Zero and negative numbers
represent 1 BCE and prior years.

‘month’ represents a month from January to December, and
should be a number from 1 to 12.

‘day ' represents a day in the specified month for the
specified year, from one up to the number of days in the
month (inclusive). It must not contain a value that
doesn't represent a date for that month and that year.

26 /68

Testing and APIs
000008000000 000000

Invariants and errors

Example struct

<... snipped>

‘day’ represents a day in the specified month for the
specified year, from one up to the number of days in the
month (inclusive). It must not contain a value that
doesn't represent a date for that month and that year.

* X X ¥

*/

The documentation describes several invariants which must hold
true of a date struct for it to be meaningful.

Who is responsible for enforcing that they hold?

What should we do if we discover they do not hold?

27 /68

Testing and APIs
000000800000 000000

Invariants and errors

Invariants

An invariant is a statement that must always hold true of some data
structure (or variable, or system as a whole) for it to make sense.!

! Another sort of invariant you might encounter is a loop invariant: a
statement that must hold true before and after every execution of a loop body.
These are used when proving that code meets its specifications (for instance in

the verification-aware Dafny language).
28/68

https://dafny.org

Testing and APIs
0000000 e0000000000

Invariants and errors

Invariants

When we write functions that operate on a data structure, they
must maintain the invariants on the data structure:

before and after the function executes, the invariants must remain
true.

If not, that means?

a. there is a logic error in our function, and

b. our data no longer makes any sense. It is in an erroneous or
inconsistent state.

(And potentially, so is our whole program.)

20r it could mean our program was already in an erroneous or inconsistent
state, but we are just now discovering it.

For instance, some function elsewhere might have gone out of memory bounds
and overwritten the values of our struct.

29/68

Testing and APIs
000000008000 000000

Invariants and errors

Example operations

> Creating a new value of type struct date.
By the time it completes, invariants for the struct must be
established.

How might we write a function for this? What would be the
preconditions or postcondition?

> Incrementing a date by one day.

void incrementDate(struct date xd);

Before and after the function executes, it must maintain our
invariants for date.

What about during execution?

30/68

Testing and APIs
000000000 e00000000

Invariants and errors

EIES

Some other examples of invariants:

> A red—-black tree, a self-balancing binary search tree structure.
It can be used to implement sets and maps.
It has the invariant: adjacent (parent—child) nodes must never
be of the same color.

> A database could store tables of students, courses, and
enrolments (where an enrolment records information about a
(student, course) pair).
A typical invariant is: an enrolment must refer to a valid
student ID and a valid course ID.

31/68

https://en.wikipedia.org/wiki/Red%E2%80%93black_tree

Testing and APIs
0000000000 e0000000

Invariants and errors

Guarantees and privacy

Once we document the invariants, we are guaranteeing to users of
our code that we will maintain the invariants.

For a struct, our guarantee is contingent on the user of our code not
manually altering the values of the struct members themselves.

Other languages (such as Java, or C++) provide language support for
protecting members from alteration by an API user.

In C, we might simply advise API users that the onus is on them to
ensure they don't alter struct members. If they break that condition,
the behaviour of their program is undefined.

32/68

Testing and APIs
00000000000 e000000

Invariants and errors

Opaque pointers

It is also possible to hide implementation details of a struct behind
what's called an opaque pointer. The FILE type in C is an example
of this.

typedef struct my_file_impl *FILE;
You can see more examples of opaque types in the GNU multiple
precision arithmetic library (GNU MP). It defines

» Infinite-precision integers (type mpz_t)
> Rational numbers (type mpq_t)

But the API does not expose the internals of these types — we are
merely given functions for initializing and operating on them.

33/68

https://gmplib.org
https://gmplib.org
https://gmplib.org/manual/Integer-Functions
https://gmplib.org/manual/Rational-Number-Functions

Testing and APIs

000000000000 e00000

Invariants and errors

C provides an assert() macro — the purpose of this is to allow us to
check that our assumptions hold, and abort the program if they do
not.

Most languages provide an equivalent. (Python and Java do.)

34/68

https://en.cppreference.com/w/c/error/assert

Testing and APIs

0000000000000 e0000

Invariants and errors

Question: should we assert() that preconditions for functions hold?

35/68

Testing and APIs
000000000000 00e000

Invariants and errors

Assertions and bugs

A run-time assertion violation is the manifestation of a bug.
Either:

> the user of an API failed to satisfy the preconditions of a
function, so the behaviour of the system is now undefined, or
> the implementer of the APl has made a programming mistake.

36/68

Testing and APIs
000000000000 000e00

Invariants and errors

Signalling errors

Many languages conflate logic errors with operations that can fail.
logic error
a defect or bug in a program that causes it to behave incorrectly

Example: attempting to access an element outside the bounds of
an array.

fallible operation

an operation where it is expected that, in certain documented
circumstances, it will not complete in the normal way.

(Often, this is called a failure, but it does not mean “failure” in
the sense of “incorrect behaviour”.)

The operation will indicate to the caller when this is the case.

Example: opening a file which does not exist. 37/68

Testing and APIs
000000000000 0000e0

Invariants and errors

Signalling errors

Question: In a memory-safe language like Python or Java, is it
plausible that we could go outside the bounds of an array, but that
this is not a logic error?

38/68

Testing and APIs
000000000000 00000e

Invariants and errors

C standard library fallible operations

FILE *fopen(const char xpathname, const char xmode);

The documentation for fopen says that in some cases it can fail —
but this is not due to a logic error. We fully expect it to fail in some
circumstances.

The function needs some way of indicating this failure to the caller.

C standard library functions will typically return -1 or NULL on failure,
and will set the global value errno to some positive integer.

Functions like perror and strerror can be used to obtain a
human-readable description of the error.

Programmer code must not attempt to alter errno.

39/68

https://en.cppreference.com/w/cpp/error/errno
https://en.cppreference.com/w/cpp/io/c/perror
https://en.cppreference.com/w/c/string/byte/strerror

Testing and APIs
@0000

Test doubles

Test doubles

40/68

Testing and APIs

Test doubles

Mocks

When writing a test, we often want

> the test to run as fast as possible
> the test results to rely only on the function under test — not
other extraneous systems

So what if we're testing a function that reads information from a file
or database?

= This is very slow, and adds a dependency on the filesystem or
DBMS

= If a test failure was reported, was it due to our function or the
DB?

41/68

Testing and APIs

Test doubles

Mocks and test doubles

Mocks or test doubles (more general term)

> Actors use doubles to replace them during certain scenes
> Dangerous or athletic scenes
> Skills the actor doesn’t have, like dancing or singing

> Test doubles replace software components that cannot be used
during testing

42/68

Testing and APIs

Test doubles

Reasons for test doubles

» Component has not been written

» The real component does something destructive that we want
to avoid during testing (unrecoverable actions)

> The real component interacts with an unreliable resource

» The real component runs very slowly

> The real component creates a test cycle
> A depends on B, B depends on C, C depends on A

43/68

Testing and APIs

Test doubles

C support for test doubles

> To mock files, we can use memfd_create — provides an
“in-memory” file
> To mock functions — tricky but various solutions

> gcc provides the “weak” attribute for functions — allows for
library functions which can be overridden/replaced by user code

4468

Threat modelling with STRIDE
000000000000 000000000000

Threat modelling with STRIDE

45/68

Threat modelling with STRIDE
000000000000 000000000000

Four questions

Approach from Adam Shostack at Microsoft:

1. What are we building?

2. What can go wrong?

3. What are we going to do about it?
4. Did we do a good job?

46 /68

Threat modelling with STRIDE
0000000000000 00000000000

Four questions — activites

1. What are we building?
> Outcome: a model or diagram of the system
(and identified assets)
2. What can go wrong?
» Qutcome: prioritized list of threats
3. What are we going to do about it?
» Qutcome: prioritized list of mitigations or countermeasures
4. Did we do a good job?
> Qutcome: validation of prior steps; tests; gaps identified;
improvements to process

47/68

Threat modelling with STRIDE
000@00000000000000000000

Iterable

build
model
identify
threats
validate
identify
mitigations

48/68

Threat modelling with STRIDE
0000@0000000000000000000

“Small and often” is better than “comprehensive, but never finished".

> Full inventory of all potential threats for a large, complex
system could be huge

> But it's better to do something than nothing, and it's better to
identify the most critical threats than to aim for completeness

First pass = focus on biggest, most likely threats, to high-value
assets

» Other assets and threats can be dealt with later; scope can be
increased

49/68

Threat modelling with STRIDE
00000@000000000000000000

What are we building?

The aim is to produce a model or high-level description of the
system, including assets (valuable data and resources) that need
protection.

> Traditionally:
> data flow diagram (DFD), or
> Unified Modelling Language (UML)

But any sort of model will do.

Could be a design document or a box-and-arrows whiteboard sketch.

50 /68

Threat modelling with STRIDE
000000@00000000000000000

Level of detail

No model is perfect — it is a useful simplification of reality.

> Needs enough granularity that we can analyse it, identify assets
and threats

> Always possible to iterate the process later with more detailed
models if necessary

> Too little detail = details will be missed
Too much detail = the work will take too long

51/68

Threat modelling with STRIDE
0000000@0000000000000000

lterating a model

We can always note down spots where a model could be improved
later.

Phrases to watch out for: “sometimes”, “also”.

> “sometimes this data store is used for X", “this component is
also used for Y’ = more detail could be useful

52/68

Threat modelling with STRIDE
0000000080 00000000000000

|dentify assets

These are things we want to protect.
Usually data.
But could also be:

> hardware

> information technology resources (like bandwidth,
computational capacity)

> physical resources (electricity)

Can you think of threats targeting these?

53/68

Threat modelling with STRIDE
000000000e00000000000000

|dentify assets

Assets should be prioritized — which are most important?

> We could try to hide everything about our server, for example
> But is the best use of our time?

» Compare server details with (e.g.) financial data, password
hashes, cryptographic keys

54/68

Threat modelling with STRIDE
0000000000 e0000000000000

|dentify assets

Don't try and put a dollar value on assets. Avoid superfluous and
unrealistic granularity.

> One idea: categorize with “T-shirt sizes”
> “Large” (major assets), “Medium" (valuable assets, but less

critical), “Small” (minor consequence).
> ... maybe your project needs “Extra-large”
(super-critical)?

Remember other parties/stakeholders’ viewpoints — something you
think is of “minor consequence” could be much more important to
(e.g.) a customer, CEO, finance, etc.

55 /68

Threat modelling with STRIDE
00000000000 e000000000000

What can go wrong? — ldentify threats

Methodically go through the model, component by component, flow
by flow, looking for possible threats.

Identify

> attack surfaces (places an attack could originate)
> Points where an attacker could interpose themselves

> trust boundaries (the borders between more-trusted and

less-trusted parts of the system)
» These will intersect data flows

> threats in each of the possible STRIDE categories.

Tip: threats often lurk at trust boundaries.

56 /68

Threat modelling with STRIDE
000000000000 e00000000000

|dentify attack surfaces

These are an attacker’s “points of entry”, or opportunities for
attack. (For example: communication over a network.)

> When we look at mitigations — try to completely remove, or at
least reduce, opportunities for attack

57 /68

Threat modelling with STRIDE
0000000000000 e0000000000

|dentify attack surfaces

Physical example: we have a building we want to secure.

> What's better — many exits and entries?
> Or: just a single exit and entry, which we can monitor carefully,
and have (e.g.) security screening, metal detectors at.

58 /68

Threat modelling with STRIDE
0000000000000 0e000000000

|dentify threats

For each of the STRIDE categories — e.g. tampering — we ask, What
advantages could an attacker gain if they did/subverted X?

A suggested approach: brainstorm first — come up with ideas
quickly, without critiquing or judging them yet

59 /68

Threat modelling with STRIDE
0000000000000 00e00000000

Analyse, understand and prioritize threats

For each identified threat:

> flesh out the details
> try to assess the chance of them happening
> assess what the impacts would be

60 /68

Threat modelling with STRIDE
0000000000000 000e0000000

Analyse, understand and prioritize threats

> For probability and impact — no need for exact numbers — just
use a point/level system (e.g. 1 to 3, 1 to 5)

"o n,ou

> Give your levels labels — “likely”, "unlikely”; “minor
impact”, “showstopping / enterprise-destroying”
> Be cautious of unrealistic levels of granularity —
can you really distinguish “5%" versus “7.5%" probability, or
“3/10" from “4/10"?

61/68

Threat modelling with STRIDE
000000000000 00000e000000

Ranking threats

Microsoft “DREAD" model:

» Damage: How great would the damage be if the attack
succeeded?

> Reproducibility: How easy is it to reproduce an attack?

> Exploitability: How much time, effort, and expertise is needed
to exploit the threat?

> Affected users: If a threat were exploited, what percentage of
users would be affected?

> Discoverability: How easy is it for an attacker to discover this
threat?

62/68

Threat modelling with STRIDE
000000000000000000e00000

What are we going to do about it? — mitigations

> Propose ways of dealing with each threat — usually called
“mitigation” or “countermeasures”.
> But in full: either mitigate, remove, transfer, or accept.

63/68

Threat modelling with STRIDE
0000000000000000000e0000

Mitigations and other approaches

> Mitigate risk by redesigning or adding defenses.
» The aim is either to reduce the chance of the risk occurring, or
lower degree of harm to an acceptable level
> Remove a threatened asset if it is not actually needed
> Or if removal is not possible — seek to reduce the exposure of
the asset, or limit optional features of your system that increase
the threat

64/68

Threat modelling with STRIDE
00000000000000000000e000

Mitigations and other approaches

> Transfer the risk — offload responsibility to a third party.
» Example: Insurance is a common type of risk transfer
> Example: Outsource responsibility for e.g. processing payments,
or processing sensitive data, to an enterprise with expertise in
the area.
> Accept the risk (once it's well understood) as being reasonable

to incur.

65/68

Threat modelling with STRIDE
000000000000000000000e00

Mitigations — questions to ask

> Can we make the attack less likely to work?

P Can we make the harm less severe — perhaps only some of the
data is accessible?

» Can we make it possible to undo the harm — e.g. backups?

> Can we make it more obvious when harm has occurred — e.g. by
ensuring we have comprehensive logging and monitoring?

66 /68

Threat modelling with STRIDE
0000000000000000000000e0

Did we do a good job? — validation, review and testing

> Validate previous steps, act upon them, look for gaps missed
> Test the efficacy of mitigations, from most to least critical

67 /68

Threat modelling with STRIDE
00000000000000000000000e

Validation

> For a model — does it match what has actually been
implemented?

> For threats — have we describe them properly? missed any?
> do they: describe the attack, the context, the impact?

» Other stakeholders — have testing/quality assurance staff
reviewed the model?

> Mitigations — is each threat mitigated (or otherwise dealt with)

> Are the mitigations done correctly? Have they been tested?

68 /68

	Testing and APIs
	Invariants and errors
	Test doubles

	Threat modelling with STRIDE

